

Industrialization of the ILC Project

Marc Ross, SLAC Linear Collider Collaboration - ILC Prepared for IPAC 2013, Shanghai, 13-17 May, 2013

Keywords:

- High Technology
- Technology transfer
 - 'valley of death'
 - 'Galapagos syndrome'
- Global partnership
- Infrastructure development
- Plug Compatibility
 - Integration and modularity
- Intellectual Property

ilr

Accelerators

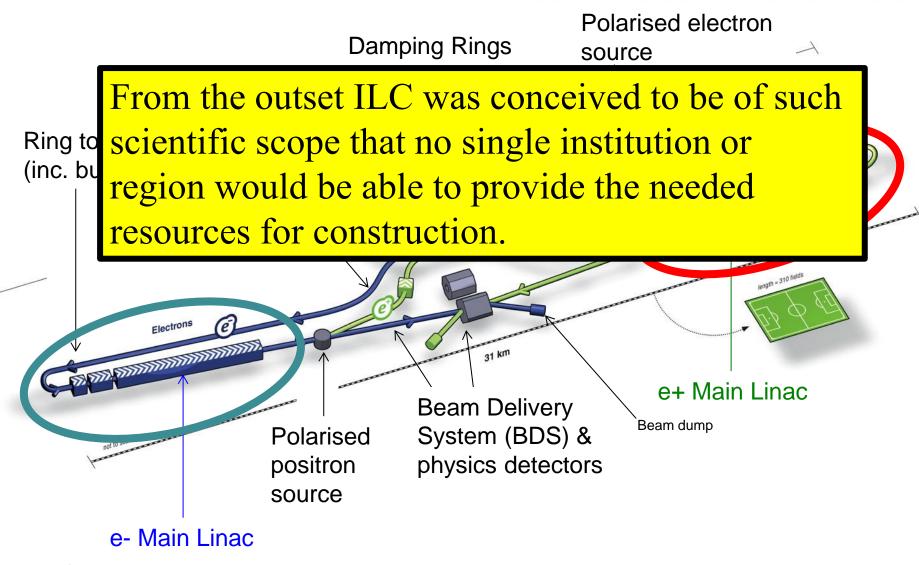
for America's

Future

8-track tape

(ca 1968)

ILC Industrialization:

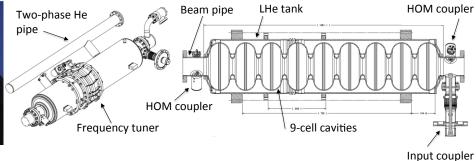

Introduction

- Scale of mass production for ILC
- Preparing for ILC Cost Model and Interface Definitions
- Technical progress
 - Cavity R&D
- Technology Transfer
 - Processing and testing recipe
 - Lab infrastructure

Working with Industrial partners

- Industrial infrastructure
- Outreach, Workshops, Contracts
- Summary

ILC in a Nutshell



:lr

İİĹ

SCRF Linac Technology

ir

1.3 GHz Nb 9-cell Cavities	16,024
Cryomodules	1,855
SC quadrupole / correction / BPM package	673
10 MW Multi-Beam Klystrons & modulators	436

→ Mature technology ← Above items ready for industrialization

ILC GDE: A Truly Global Effort

No "host" laboratory

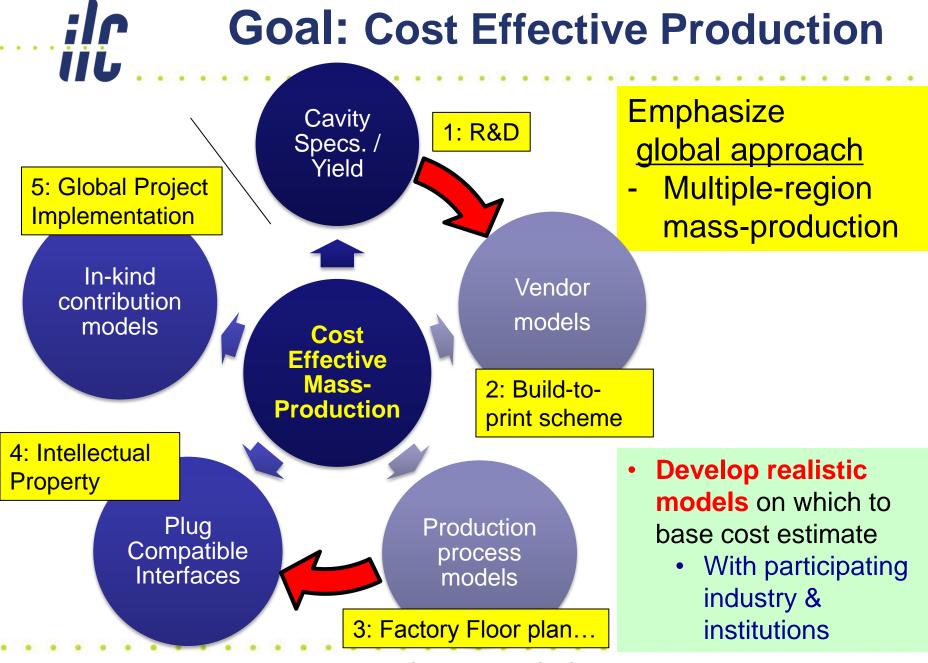
EU

- Design team(s) remain at their home institutes
- Funding via local agencies
- Global coordination by core management team

No precedence for a global project of this scale

US

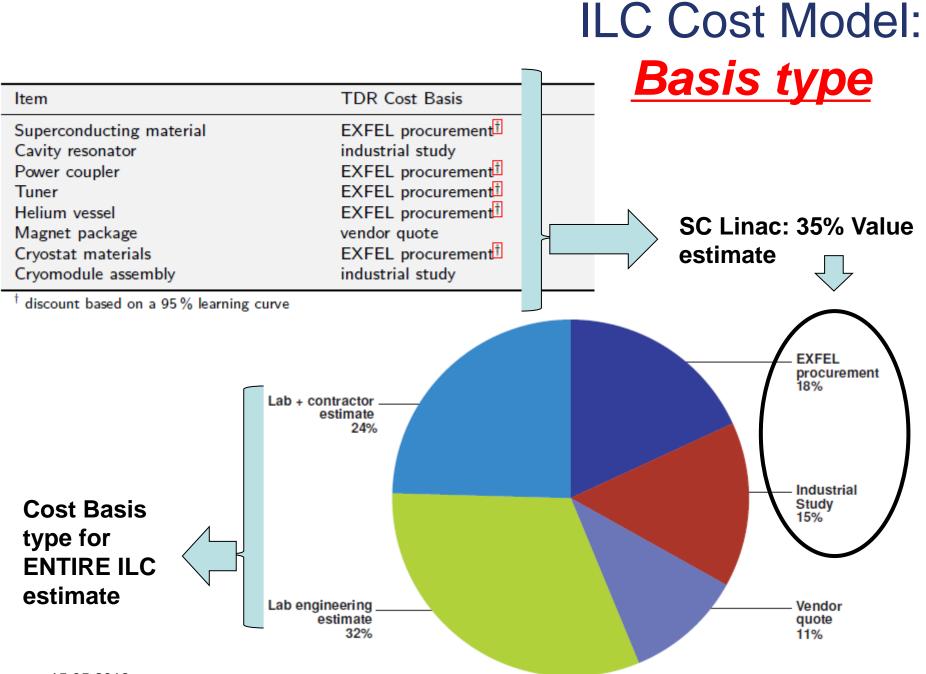
Asia


Global ILC SCRF Technology

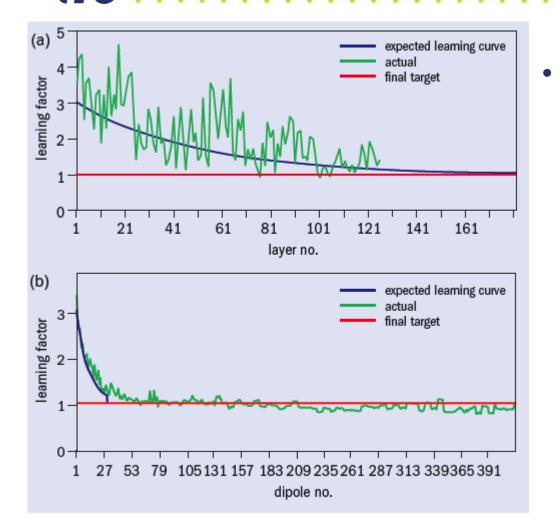
- Distributed resources: <u>but Common Goals</u> → (and useful overlap with ongoing programs)
- Parallel activities in each region ->
 Promotes involvement of regional industry
 - Key performance parameters and interfaces defined and agreed to by Global Design team
 - Cross-calibration

	European XFEL ILC (single linac)				
Maximum beam energy	GeV	17.5	250	EU-	
Accelerating gradient	MV/m	23.6	31.5	LO	
Charge per bunch	nĆ	1	3.2		
Number		2050	191 <mark>2</mark>	XFEL	
Re European XFEL	(DES)	Y):			
Du				6% scale of	
Be • Construction	<u>comp</u>	iete in 20'	<u>15</u>		
Matched loaded Q	1	4.7×10^{6}	5.5×10^{6}	ILC – <u>most</u>	
Fill time	μs	803	927	<i>important</i>	
RF pulse length	ms	1.45	1.65	industrial	
Number of klystrons		29	188/205	demo	
Number of cavities		800	7332		
Number of cryomodules		100	846		
Cavities per klystron		32	39/36	12.5 m long	
Average beam power per klystron	MW	3.92	7.37/6.80	d cryomodule	
			292 mm		
ILC		-	4 232 mm		
	*				
		a gunna agunn			
		1.1	→ 353 mm	- / -	
XFEL 1.3 GHz nine-cell cavities (x8) superferric bath-cooled					

Goal: Cost Effective Production


ILC Cost Model

- Allows funding agencies to assess needed resources
- A tool for further cost optimization and iteration
 - <u>Specific production plans studied and evaluated for</u>
 <u>Technology Drivers</u>: by experienced, Qualified Vendors
 - 'Learning Curve' mass-production scaling for others


Project Planning:

- Consideration of governance and procurement models
- Qualified Industrial Partners help to create a defendable ILC cost estimate by providing detailed, understandable basis

İİL

BN* Learning Curve – LHC dipoles

"...the learning
percentage for the LHC
dipole production lies,
not surprisingly,
between shipbuilding
and aerospace
production"

* * Babcock Noell Group

"The Longest Journey – The LHC dipoles arrive on time" L. Rossi, CERN Courier 10.2006

≡ *Functional interface definition for key* <u>components</u>

- Promote diversity and innovative contributions within specified interface
 - Effective inter-lab tech transfer; many examples
 - Strengthens overlap with partner lab programs by providing technical flexibility
- Take the lowest cost 'demonstrated component' for the estimate but expect
- Plug-Compatibility to be applied for both R & D <u>and construction phase</u>

İİİ.

ILC Industrialization:

Introduction

İİL

- Scale of mass production for ILC
- Preparing for ILC Cost Model and Interface Definitions
- Technical progress
 - Cavity R&D
- Technology Transfer
 - Processing and testing recipe
 - Lab infrastructure

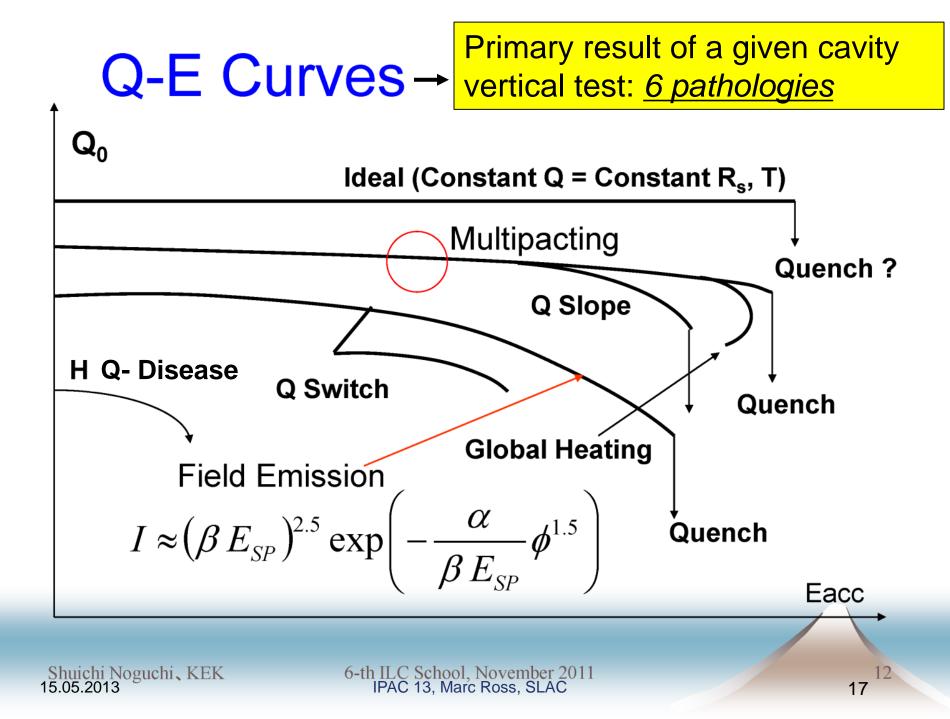
Working with Industrial partners

- Industrial infrastructure
- Outreach, Workshops, Contracts
- Summary

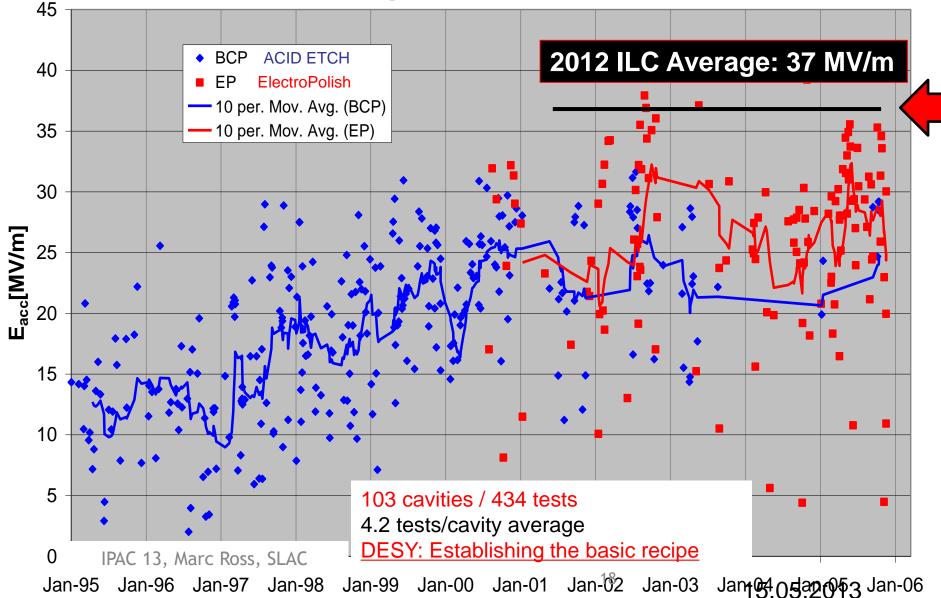
ILC SCRF R&D Chronology

_		2006	2010	20 1	3 →			
	<u>Cavity</u> Gradient (CW vertical test)		100 cavities (total) from e 3 regions for:					
	<u>Cryomodule</u> – (tested	Integration test:			XFEL			
	without beam)	the '	the ' <u>global cryomodule</u> '		AMTF			
_	Dedicated BeamTests		FLASH - DE	SY (mainly)				
	<u>Industrialization</u> and <u>Communication</u> with Industry:	 1st Visit Vendors (2009), Organize Workshop (2010) 2nd visit and communication, Organize 2nd workshop (2011) 3rd communication and study contracts (2011-2012) 			2 nd			
	Path to qualification: Actually building cavities							
	15.05.2013	IPAC 13 M	arc Ross, SLAC		15			

• •

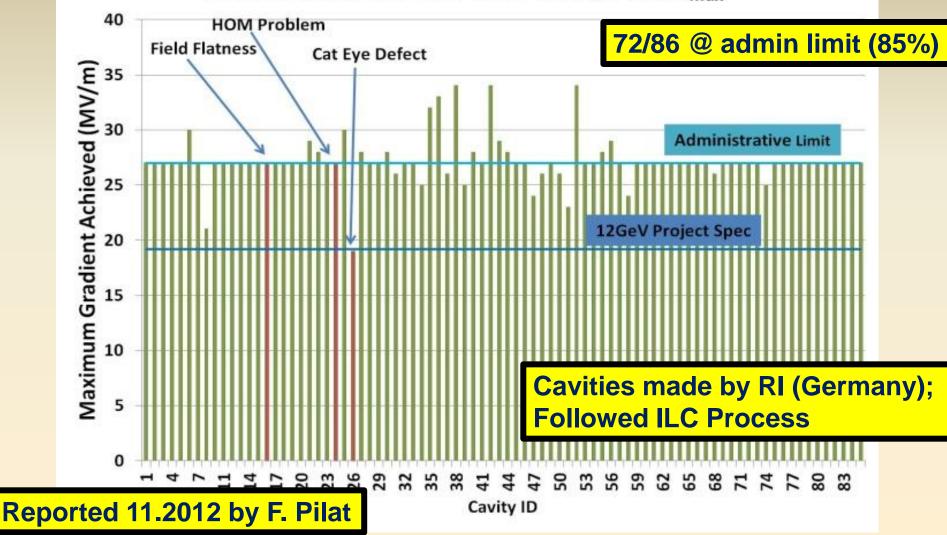


Vacuum vessel fabrication in factory


The effort towards realising the International Linear Collider is being carried out by global collaboration. Such efforts focus mainly on the technology development, but other aspects such as training the younger generation, are also important to ILC community. From 7 to 18 September China hosted the Fourth International Accelerator School for Linear Colliders in Beijing at Huairou. Among 69 students from 21 countries, there were 29 students from Asia, including 15 Chinese students. Since 2005, Chinese PhD students majoring in ILC-related topics are increasing

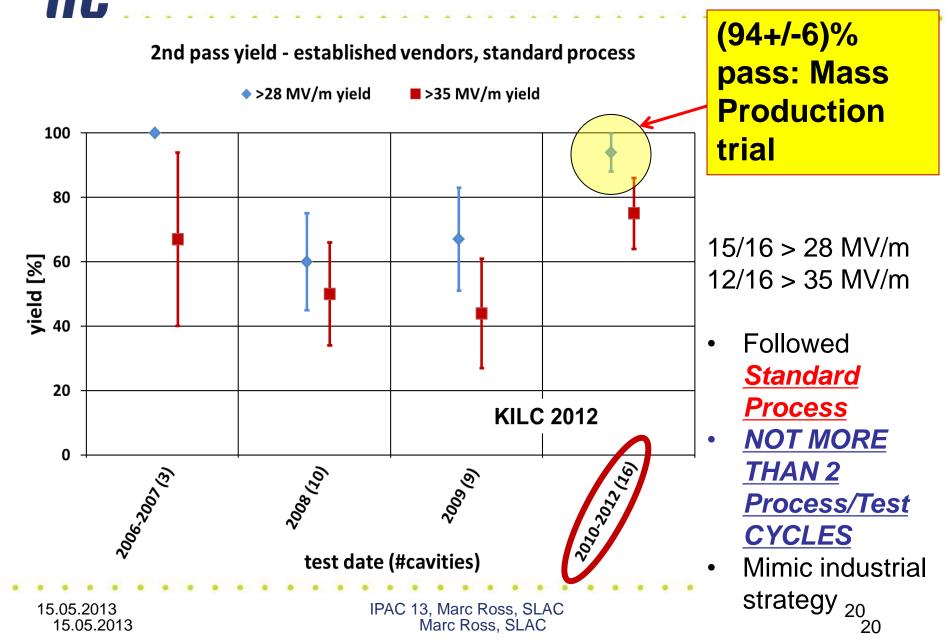
The new worldwide ILC cavity database features only nine-cell, no single-cell cavities like the one held by Camille Ginsburg in this picture. Image: Fermilab. IPAC 13, Marc Ross, SLAC

Production yield: Limit of 2 chemical processing cycles


Vertical Cavity Test Results at DESY: 1995-2006 – the great decade of SRF R&D

CEBAF 12 GeV upgrade 12 GeV cavities: overall performance

Vertical Test; 1500 MHz 7 cell; 10% gradient correction

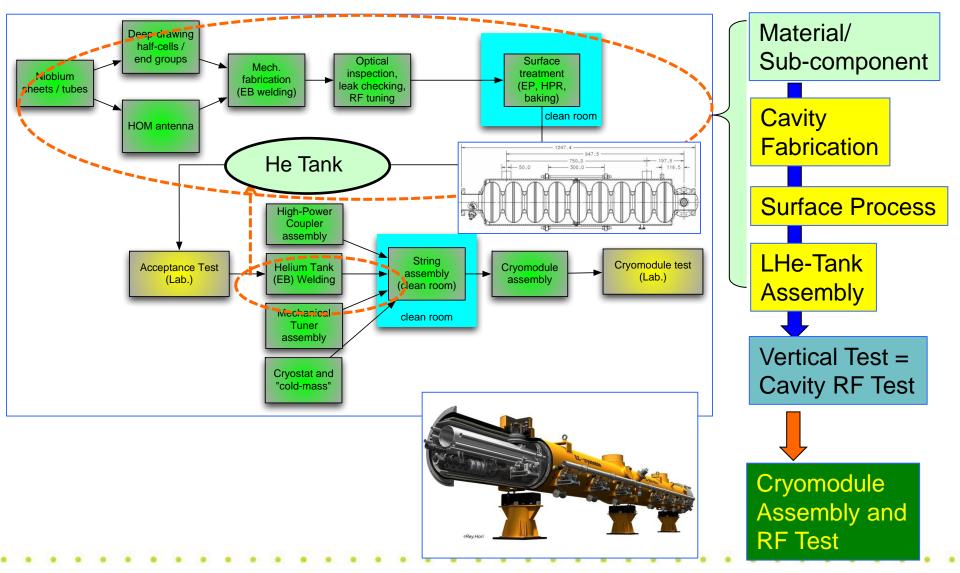

Jerrerson Lab 12 GeV C100 Cavity Final Emax

Jefferson Lab

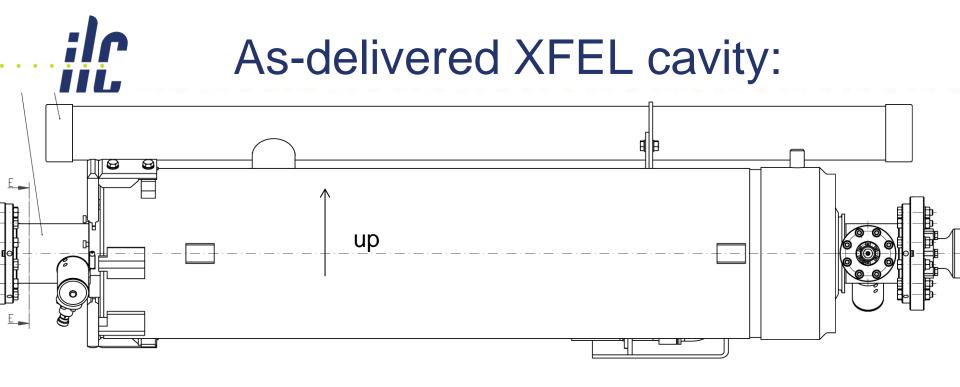
Global Progress in ILC Cavity Gradient Yield

ILC Industrialization:

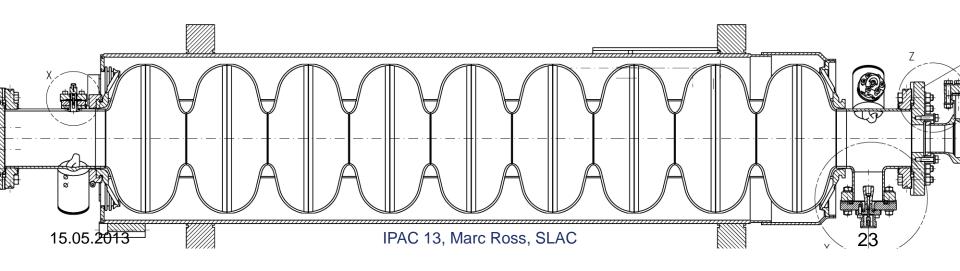
Introduction

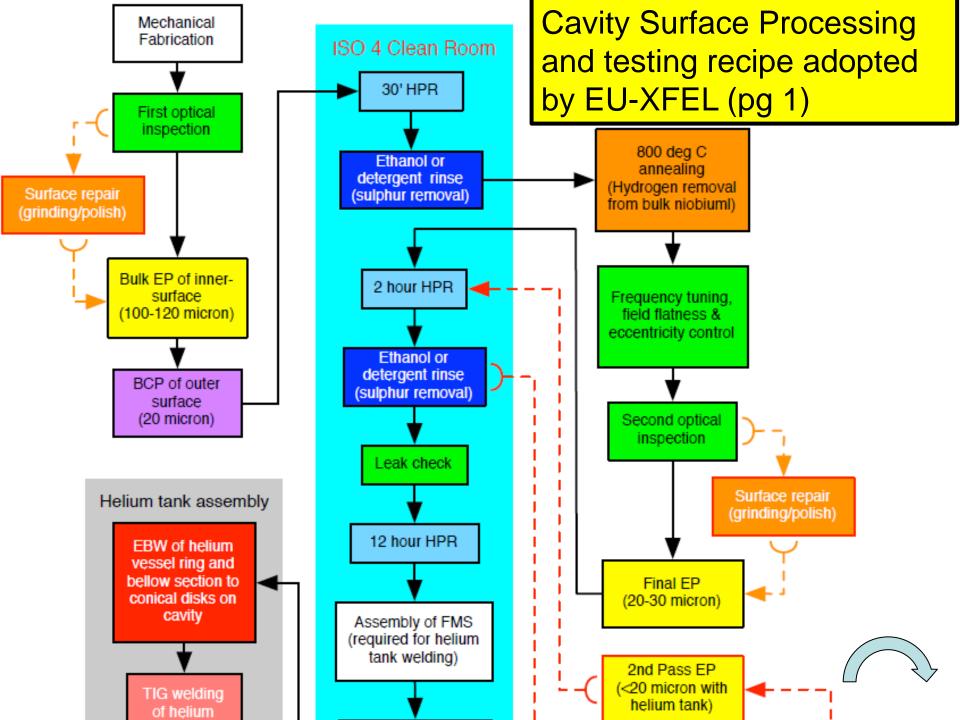

İİL

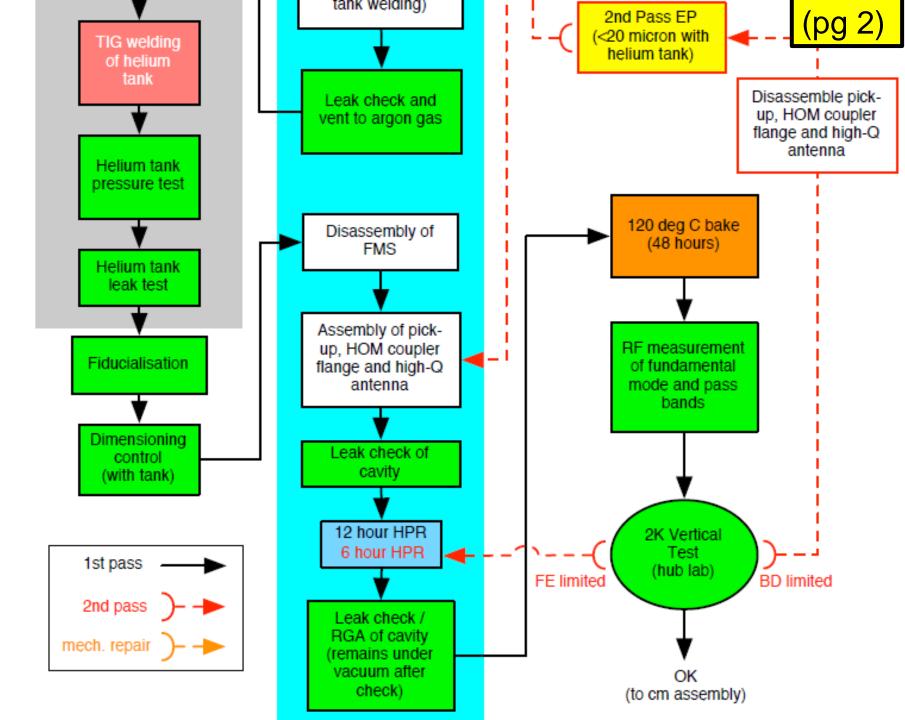
- Scale of mass production for ILC
- Preparing for ILC Cost Model and Interface Definitions
- Technical progress
 - Cavity R&D
- Technology Transfer
 - Processing and testing recipe
 - Lab infrastructure


Working with Industrial partners

- Industrial infrastructure
- Outreach, Workshops, Contracts
- Summary


Cavity/ Cryomodule Fabrication




15.05.2013

1442,01

Reference for Cavity Specification

except for Tuner

Technical guideline for ILC-GDE TDR and the cost estimate:

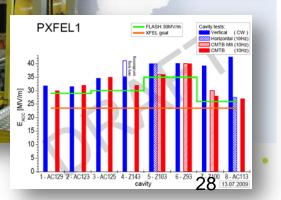
- referring Specifications for E-XFEL SCRF 1.3 GHz Cavity, issued by DESY

- EXFEL/001 and associated documents :Rev.B, June 2009, by courtesy of W. Singer (DESY-XFEL)),
- The reference specification is available with ILC-GDE PMs, under permission of W. Singer (DESY-XFEL)
- URL: <u>http://ilcagenda.linearcollider.org/event/ILC-SCRF-TR</u>

W. Singer		XFEL/00 VALID DOCUMENTS		
	Number	Title Valid Documents for the Series Mechanical Fabrication of	. All	. Singer
	XFEL/0	¹¹ Superconducting 1,3 GHz Cavities for the European XFEL	в	
	XFEL/0	Superconducting 1,3 GHz Cavities for the European XFEL	В	
VALID DOCUMENT'S	XFEL/00 XFEL/00		В	-
FOR THE	XPEL/0		в	
SERIES MECHANICAL	APEL/A	Consideration of the second se	B	-
			в	
From European YEE		•	в	
From European XFE			в	
	•		в	1
 Full Cavity specification as a basis for cost / industrial studies 			в]
			в	
			в	
			d B	6
			ka B	
Otombie en la la trata de sur se su t				yperated
 Starting-point docu 	ment		ak B B	- <u>-</u>
				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4/ initiation000000 1/ initiation 1//2 1/ initiation		5	scrf-treq	N. DODDODSISHI Peri

Cryomodule Development & Test

• KEK: STF (S1-Global)


FNAL: NML Facility

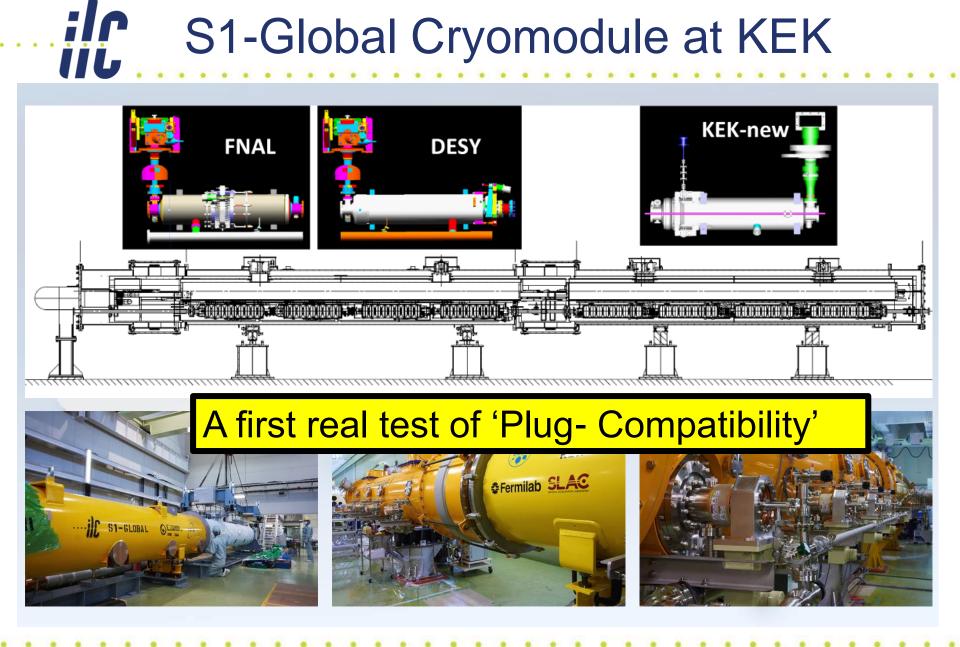
DESY: XFEL

 including prototype module ACC7 in FLASH (~30MV/m)

IPAC 13, Marc Ross, SLAC

*‡***Fermilab SLAC**

EU-XFEL Cryostat / Cold-Mass


WUXI CITY CREATIVE CHEMICAL EQUIPMENT CO.,LTD. 无锡市创新化工设备有限公司

科技部973重点科研项目:低温恒温器

 Supported through Chinese innovation initiative '973'

S1-Global Cryomodule at KEK

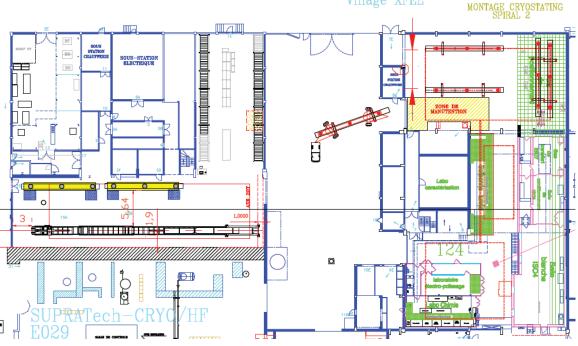
The European XFEL - Progress and Status

Courtesy: H. Weise (DESY), O. Napoli (Saclay)

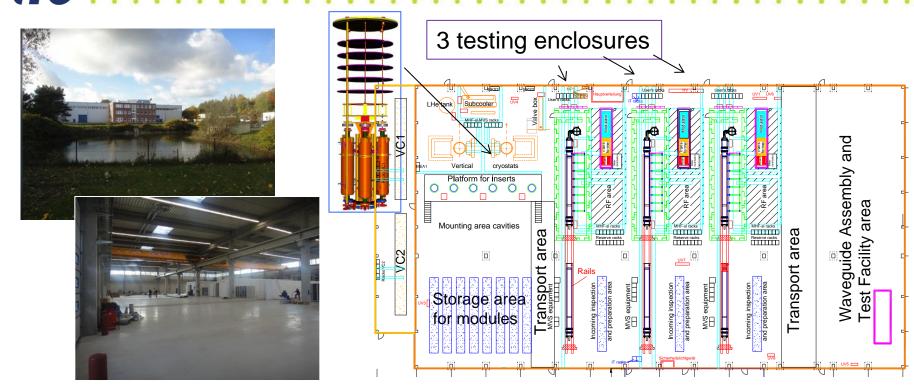
Saclay Cryomodule Assembly:

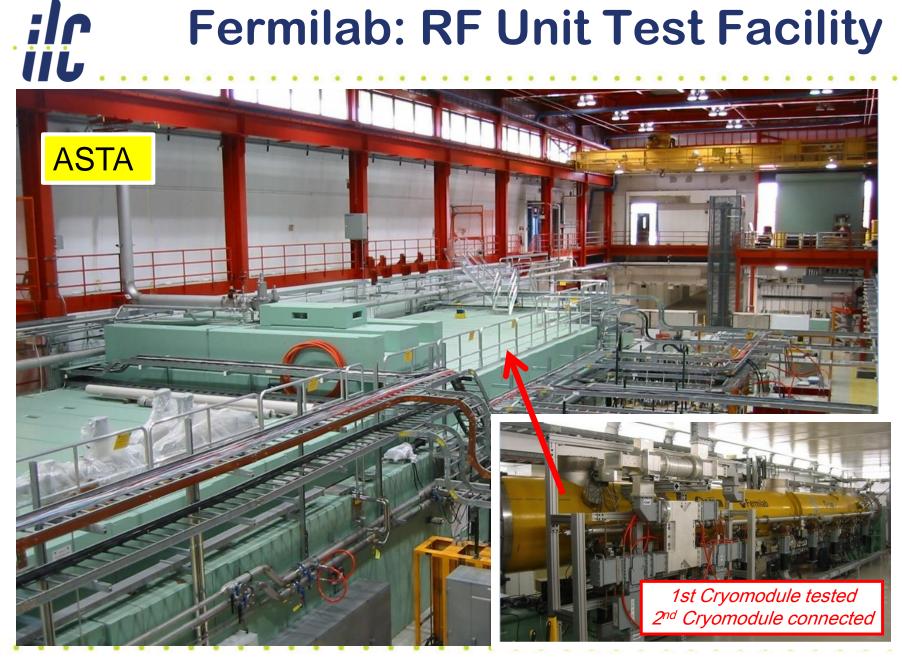
irfu

saclay


cavity strings assembly cryomodules assembly BPMs system

Village XFEL




Courtesy: H. Weise (DESY)

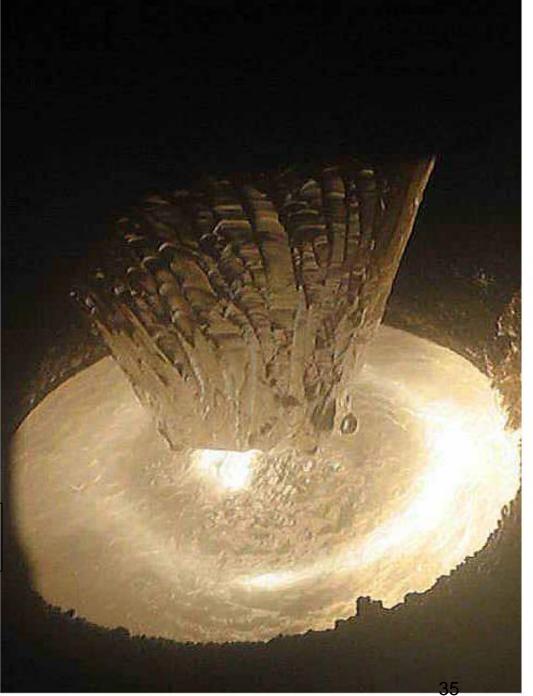
IC DESY Cavity/Cryomodule Test Facility

- XFEL Module testing at DESY
- ILC cavity/cryomodule production testing can be done with ~ 3 such test facilities.
- A factor of 3: 20 X more CM / 2 period of time / 3 regions

Fermilab: RF Unit Test Facility

ILC Industrialization:

Introduction


İİL

- Scale of mass production for ILC
- Preparing for ILC Cost Model and Interface Definitions
- Technical progress
 - Cavity R&D
- Technology Transfer
 - Processing and testing recipe
 - Lab infrastructure
- Working with Industrial partners
 - Industrial infrastructure & Sharing responsibilities
 - Outreach, Workshops, Contracts
- Summary

Electron Beam Melting

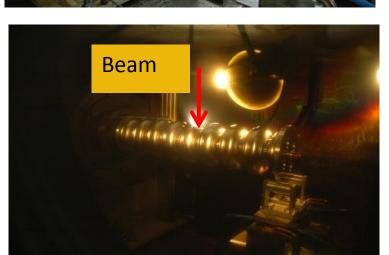
As a result of the increasing demand for refractory metals in the last few decades, the electron-beam furnace has been developed to a reliable, efficient apparatus for melting and purification.

Critical industrial Infrastructure 1: Vacuum Smelter for purifying Nb

15.05.2013

W. Singer. Tutorial. 14th International Workshop on RF Superconductivity, September 20-25, 2009, Dresden, Germany

Heraeus, Germany (others: ATI-WahChang, Tokyo Denkai, OTIC Ningxia)


3

6 such moderate size vacuum smelting plants operating at capacity for 2 to 3 yrs. (Similar Nb total for LHC; specs are different for magnet conductor)

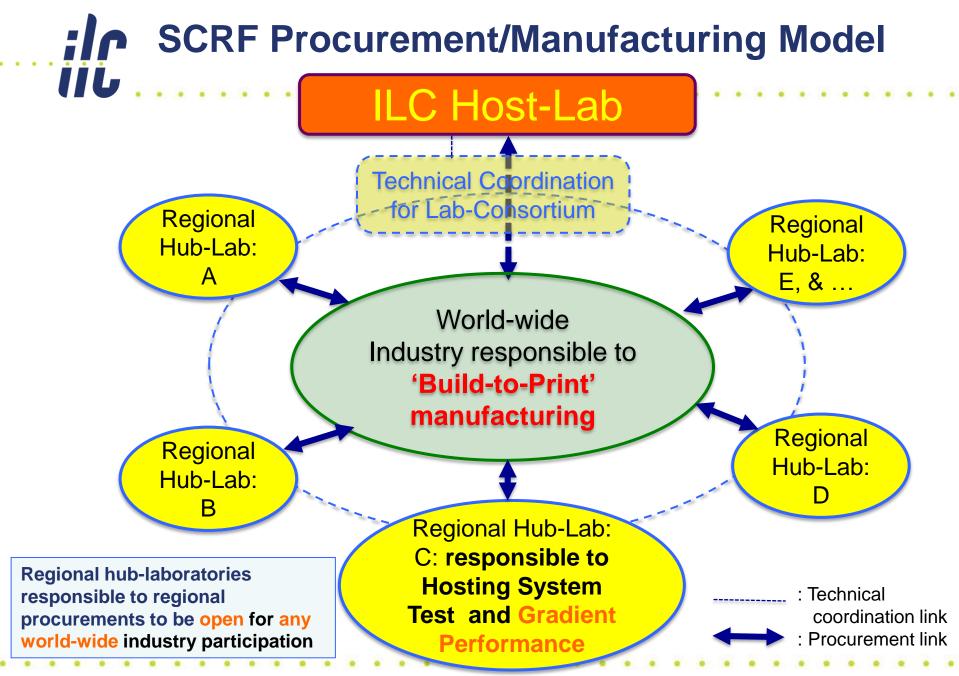
500KW electron beam cold hearth furnace

IC Electron Beam Welding at KEK:

- Goal: Develop welding parameters and tooling openly, at an institution, and share with industrial partners
- Cost of tooling development absorbed by institution

8 July 2011

Critical industrial Infrastructure 2: Electron Beam Welder



Electro-polishing

ilc

Graphics by Rey Hori / Mamoru Horiuchi

Critical industrial Infrastructure 3: HF-based electro-polishing

IC Production Process/Responsibility

Step hosted	Industry	Industry/Lab oratory	Hub- laboratory	ILC Host- laboratory
Regional constraint	no	yes	yes	yes
Accelerator - Integration, Commissioning				Accelerator Integration
SCRF Cryomodule - Performance Test			Cold, gradient test	As partly as hub-lab
Cryomodule/Cavity - Assembly		Coupler, tuner, string/cryomod work		As partly as hub-lab
Cryomodule component - Manufacturing	V. vessel, cold-mass			
9-cell Cavity - Performance Test			Cold, gradient	As partly as hub-lab
9-cell Cavity - Manufacturing	9-cell-cavity ass proce <mark>s</mark> \$, He-Jac	sembly, Chem-		
Sub-comp/material - Production/Procurement	Nb, Ti, specific comp	,	Procurement	

ILC Industrialization:

Introduction

İİL

- Scale of mass production for ILC
- Preparing for ILC Cost Model and Interface Definitions
- Technical progress
 - Cavity R&D
- Technology Transfer
 - Processing and testing recipe
 - Lab infrastructure

Working with Industrial partners

- Industrial infrastructure
- Outreach, Workshops, Contracts
- Summary

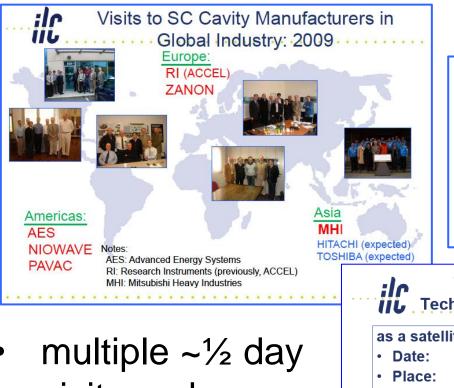
- Is there a viable SCRF business model?
 - <u>Maybe!</u> (applications presented at IPAC13)
- Scale of production needed for ILC is too large and could not be part of that but...
 - IP gained along the way definitely would be
 - And must be vigorously protected
- Plant development and business scheme different character from LHC experience

Niobium Superconducting Cavities 1.3 GHz 9-Cell ILC/TESLA

*Entry level niobium cavity delivered in 3 months (other options available).

in stock for quicl delivery

Let us help you customize the exact niobium structure you need from 28 MHz to 3.9 GHz and beyond.



NIOWAVE Accelerating Your Particles

www.niowaveinc.com sales@niowaveinc.com 517.999.3475

eyond. Contact us to discuss your needs IPAC 13, Marc Ross, SLAC 43

:Ir Communication w/ Industry İİL

visits and

open workshops

A Satellite Meeting at IPAC-2010

SCRF Cavity Technology and Industrialization

Date :	May 23, 2010, a
Place:	Int. Conf. Cente
Organized by:	ILC-GDE Projec

a full-day meeting, prior to IPAC-2010 er, Kyoto, Japan ct Managers,

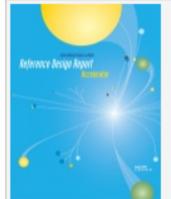
The 2nd workshop on SCRF **IIL** Technology and Industrialization for the ILC

as a satellite meeting of SRF 2011

- July 24, 2011
- Chicago
- Agenda:
 - Introduction
 - Reports from SCRF cavity/cryomodule industry
 - Reports from SC material vendor
 - Comments from Potential Regional Hub-laboratory
 - Discussions on the ILC SCRF industrialization model
- Note:
 - Open for everybody,
 - Many Industrial participations acknowledged

IPAC 13, Marc Ross, SLAC

ILC Global Design Effort Project Manager visit to SCRF cavitycryomodule manufacturers


February - March 2011

In the ILC-GDE Technical Design Phase 2, we intend to seek for cost-effective mass-production scenarios for the SCRF cavity and cryomodule systems. As the primary cost driver for the ILC, establishing a defendable and realistic cost for the industrial manufacture with a level of 2,000 cryomodules will be by far the most critical issue facing the GDE as it prepares for the Technical Design Report at the end of 2012.

This web page is intended to capture the material presented to vendors and to include key references.

ILC-SCRF Status and Preparation for Industrialization of Cavity and Cryomodule (pdf, English) Akira Yamamoto, Marc Ross, Nick Walker - Project Managers for the ILC Global Design Effort, Prepared for visiting SCRF cavity/cromodule manufacturers, Revised May 2011

Preparation for ILC SCRF Cavity and Cryomodule Industrialization (pdf) Akira Yamamoto, Marc Ross, Nick Walker - Project Managers for the ILC Global Design Effort, Revised May 2011.

Reference Design Report

Download the full report

Volume 3 - Accelerator: Download the pdf (20MB) ILC Research and Development Plan for the Technical Dealgo Phase

ic

ALC: NO

10 Batalbarge New Director Bary Book

Period Is, The Formula Docker Mode Project Recomment Period Manage's Law Real Inde Action Asta Panamas Pevelopment Plan for the Technical Decise Phase $\sim \frac{1}{2}$ day visits: use of common presentation material

ILC Research and

15.05.2013 (Last updated: 1 March 2011)

The 2nd cycle Communication with Companies

SC Material Cavity /Cryomodule Manufacturers

	Date	Company	Place	Technical sbject
1	2/8, 2011	Hitachi	Tokyo (JP)	Cavity/Cryomodule
2	2/8	Toshiba	Yokohana (JP)	Cavity/Cryomodule, SCM
3	2/9	MHI	Kobe (JP)	Cavity / Cryomodule
4	2/9	Tokyo Denkai	Tokyo (JP)	Material (Nb)
5	2/18	OTIC	NingXia (CN)	Material (Nb, NbTi, Ti)
6	(3/3), 9/14	Zanon	Schio (IT)	Cavity/Cryomodule
7	3/4,	RI	Koeln (DE)	Cavity
8	(3/14), 4/8	AES	Medford, NY (US)	Cavity
9	(3/15), 4/7	Niowave	Lansing, MI (US)	Cavity/Cryomodule
10	4/6	PAVAC	Vancouver (CA)	Cavity
11	4/25	ATI Wah-Chang	Albany, OR (US)	Material (Nb, Nb-Ti, Ti)
12	4/27	Plansee	Ruette (AS)	Material (Nb, Nb-Ti, Ti)
13	5/24	SDMS	Sr. Romans (FR)	Cavity
14	7/6	Heraeus	Hanau (DE)	Material (Nb, Nb-Ti, Ti)
15	10/18	Babcock-Noell	Wurzburg (DE)	CM assembly study
15. 106 .20	01 31/11	SST IPAC	1Maisachs(DE)AC	Electron Beam Welder

The 3rd Cycle Communication with Companies

ilr

Further studies with contracts in 2011-2012

	Date	Company	Place	Technical sbject
1	2/8, 2011	Hitachi	Tokyo (JP)	Cavity/Cryomodule
2	2/8	Toshiba	Yokohana (JP)	Cavity/Cryomodule, SCM
3	2/9	МНІ	Kobe (JP)	Cavity / Cryomodule
4	2/9	Tokyo Denkai	Tokyo (JP)	Material (Nb)
5	2/18	OTIC	NingXia (CN)	Material (Nb, NbTi, Ti)
6	(3/3), 9/14	Zanon	Schio (IT)	Cavity/Cryomodule
7	3/4,	RI	Koeln (DE)	Cavity
8	(3/14), 4/8	AES	Medford, NY (US)	Cavity
9	(3/15), 4/7	Niowave	Lansing, MI (US)	Cavity/Cryomodule
10	4/6	PAVAC	Vancouver (CA)	Cavity
11	4/25	ATI Wah-Chang	Albany, OR (US)	Material (Nb, Nb-Ti, Ti)
12	4/27	Plansee	Ruette (AS)	Material (Nb, Nb-Ti, Ti)
13	5/24	SDMS	Sr. Romans (FR)	Cavity
14	7/6	Heraeus	Hanau (DE)	Material (Nb, Nb-Ti, Ti)
15	10/18	Babcock-Noell	Wurzburg (DE)	CM assembly study
15. 06 .20	01 31/11	SST IPAC	1Maisachs(DE)AC	Electron Beam Welder

ic Mass-Production Study Contracts:

	Company	Mass production model	Contract funded/hosted by
Cavity	RI	100% (50%)	DESY
	AES	20 %	DOE/Fermilab
	МНІ	20, 50, 100%	KEK
Quadrupole	Toshiba	100 %	KEK
CM and assembly	Hitachi	20, 50, 100%	KEK
	AES	25%	DOE/Fermilab
CM assembly	BN	100, 33 %	CERN

In parallel, EXFEL experience communicated by DESY, INFN, CES/Saclay

Communication w/ Industry on many topics

- We continue to seek cost effective production strategies by:
 - Widening cooperation with industry
 - also emphasize in-house mass-production studies
- Industry provided cost information; various models (20 ~ 100 %).

Cost study in Communication with Laboratories

 Communication with potential regional hub-laboratories to establish cryomodule assembly and test schemes; esp. required infrastructure

Further Study required

- Cost effective industrialization studies for:
 - Couplers, cryomodule assembly and test, etc
- Industrialization models for a world-wide cooperative project

• Industrial Partners for ILC:

- (Cannot name them all...)

 NingXia OTIC, CX Wuxi, Tokyo Denkai, Toshiba (Nasu and Keihin), MHI, AES, RI, BN, Zanon, CPI, DTI, Mega, Niowave, Pavac, ATI-Wah Chang, Hitachi, Heraeus, Thales, ...