

# **Summary of ILC-GDE**



Barry Barish IPAC-13 Shanghai, China 13-May-13

14-May-13 IPAC-13 Shanghai **Global Design Effort** 

1

# HEP Lab-driven R&D programs

 Room temperature copper structures (KEK and SLAC)



#### OR

 Superconducting RF cavities (DESY)



14-May-13 IPAC-13 Shanghai

International Committee for Future Accelerators (ICFA) representing major particle physics laboratories worldwide.

- Chose ILC accelerator technology (SCRF)
- Determined ILC physics design parameters
- Formed Global Design Effort and Mandate (TDR)



14-May-13 IPAC-13 Shanghai





International Technology Recommendation Panel Meeting August 11 ~ 13, 2004. Republic of Korea



Particle Accelerator Conference Knoxville, Tennessee, USA • May 16-20, 2005

#### Personal Perspectives on the ITRP Recommendation and on the Next Steps Toward the International Linear Collider



Barry Barish PAC Annual Meeting Knoxville, Tennessee 16-May-05



#### Why a TeV Scale?

- Two parallel developments over the past few years (the science & the technology)
  - The precision information e<sup>+</sup>e<sup>-</sup> and v data at present energies have pointed to a low mass Higgs; Understanding electroweak symmetry breaking, whether supersymmetry or an alternative, will require precision measurements.
  - There are strong arguments for the complementarity between a ~0.5-1.0 TeV ILC and the LHC science.





#### ILCSC/ICFA Parameters Studies physics driven input

Key Parameters

- Luminosity  $\rightarrow \int Ldt = 500 \text{ fb}^{-1}$  in 4 years
- E<sub>cm</sub> adjustable from 200 500 GeV
- Ability to scan between 200 and 500 GeV
- Energy stability and precision below 0.1%
- Electron polarization of at least 80%

#### **Options**

- The machine must be upgradeable to 1 TeV
- Positron polarization desirable as an upgrade

14-May-13 IPAC-13 Shanghai

# GDE -- Design a Linear Collider



14-May-13 IPAC-13 Shanghai

![](_page_8_Picture_0.jpeg)

### **Reference Design - 2008**

#### **RDR Reports**

Reference Design Report (4 volumes)

![](_page_8_Picture_4.jpeg)

11-Feb-08 ILCSC

:lr

İİĿ

**Global Design Effort** 

14-May-13 IPAC-13 Shanghai

#### **Global Design Effort**

5

![](_page_9_Picture_0.jpeg)

| Max. Center-of-mass energy    | 500                 | GeV                 |
|-------------------------------|---------------------|---------------------|
| Peak Luminosity               | ~2x10 <sup>34</sup> | 1/cm <sup>2</sup> s |
| Beam Current                  | 9.0                 | mA                  |
| Repetition rate               | 5                   | Hz                  |
| Average accelerating gradient | 31.5                | MV/m                |
| Beam pulse length             | 0.95                | ms                  |
| Total Site Length             | 31                  | km                  |
| Total AC Power Consumption    | ~230                | MW                  |

#### SCRF

- High Gradient R&D globally coordinated program to demonstrate gradient by 2010 with 50%yield; improve yield to 90% by TDR (end 2012)
- Manufacturing: plug compatible design; industrialization, etc.
- Systems tests: FLASH; plus NML (FNAL), STF2 (KEK) post-TDR

#### **Test Facilities**

- ATF2 Fast Kicker tests and Final Focus design/performance EARTHQUAKE RECOVERY
- CesrTA Electron Cloud tests to establish damping ring parameters/design and electron cloud mitigation strategy
- FLASH Study performance using ILC-like beam and cryomodule (systems test)

14-May-13 IPAC-13 Shanghai

## **Globally Coordinated SCRF R&D**

![](_page_11_Picture_1.jpeg)

Figure 1.2-1: A TESLA nine-cell 1.3 GHz superconducting niobium cavity.

- Achieve high gradient (35MV/m); develop multiple vendors; make cost effective, etc
- Focus is on high gradient; production yields; cryogenic losses; radiation; system performance

14-May-13 IPAC-13 Shanghai

### **Progress in Cavity Gradient Yield**

2nd pass yield - established vendors, standard process

>28 MV/m yield >35 MV/m yield

![](_page_12_Figure_3.jpeg)

Production yield: 94 % at > 28 MV/m,

Average gradient: 37.1 MV/m

14-May-13 IPAC-13 Shanghai

ilC

![](_page_13_Picture_0.jpeg)

### **Global Plan for SCRF R&D**

| Year                                                      | 07                                                                                                                                                                                                                                                                      | 200                                                                      | 8 | 20 | 09          | 20    | 010               | 2011     | 2012   |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---|----|-------------|-------|-------------------|----------|--------|
| Phase                                                     |                                                                                                                                                                                                                                                                         | TDP-1                                                                    |   |    |             | TDP-2 |                   |          |        |
| Cavity Gradient in v.<br>test to reach 35 MV/m            |                                                                                                                                                                                                                                                                         | → Yield 50%                                                              |   |    | > Yield 90% |       |                   |          |        |
| Cavity-string to reach 31.5 MV/m, with one-<br>cryomodule |                                                                                                                                                                                                                                                                         | Global effort for string<br>assembly and test<br>(DESY, FNAL, INFN, KEK) |   |    |             |       |                   |          |        |
| System Test with beam acceleration                        | FLASH (DESY) , NML/ASTA (FNAL)<br>QB, STF2 (KEK)                                                                                                                                                                                                                        |                                                                          |   |    | NAL)        |       |                   |          |        |
| Preparation for<br>Industrialization                      |                                                                                                                                                                                                                                                                         |                                                                          |   |    | Pro         | duc   | tion <sup>-</sup> | Technolo | gy R&D |
| Communication with industry:                              | <ul> <li>1<sup>st</sup> Visit Vendors (2009), Organize Workshop (2010)</li> <li>2<sup>nd</sup> visit and communication, Organize 2<sup>nd</sup> workshop (2011)</li> <li>3<sup>rd</sup> communication and study contracted with selected vendors (2011-2012)</li> </ul> |                                                                          |   |    |             |       |                   |          |        |

14-May-13 IPAC-13 Shanghai

![](_page_14_Picture_0.jpeg)

## **Accelerator Test Facility (ATF)**

![](_page_14_Figure_2.jpeg)

# **ATF-2 earthquake recovery**

![](_page_15_Figure_1.jpeg)

- Vertical beam size (2012) = 167.9 plus-minus nm
- 1 sigma Monte Carlo
- Post-TDR continue to ILC goal of 37 nm + fast kicker
- Stabilization studies

14-May-13 IPAC-13 Shanghai

İL

#### ATF-2 achieves 72.8 nm

![](_page_16_Figure_1.jpeg)

14-May-13 IPAC-13 Shanghai

İİĻ

![](_page_17_Figure_0.jpeg)

![](_page_18_Picture_0.jpeg)

| EC Working Group Baseline Mitigation Recommendation |                      |                             |                             |                                      |
|-----------------------------------------------------|----------------------|-----------------------------|-----------------------------|--------------------------------------|
|                                                     | Drift*               | Dipole                      | Wiggler                     | Quadrupole*                          |
| Baseline<br>Mitigation I                            | TiN Coating          | Grooves with<br>TiN coating | Clearing<br>Electrodes      | TiN Coating                          |
| Baseline<br>Mitigation II                           | Solenoid<br>Windings | Antechamber                 | Antechamber                 |                                      |
| Alternate<br>Mitigation                             | NEG<br>Coating       | TiN Coating                 | Grooves with TiN<br>Coating | Clearing<br>Electrodes or<br>Grooves |

\*Drift and Quadrupole chambers in arc and wiggler regions will incorporate antechambers

- Preliminary CESRTA results and simulations suggest the presence of *subthreshold emittance growth* 
  - Further investigation required
  - May require reduction in acceptable cloud density ⇒ reduction in safety margin
- An aggressive mitigation plan is required to obtain optimum performance from the 3.2km positron damping ring and to pursue the high current option

14-May-13 IPAC-13 Shanghai

### **ILC in a Nutshell**

![](_page_19_Figure_1.jpeg)

![](_page_20_Figure_0.jpeg)

### Layout

| Total site length (500 GeV CM)   | 30.5 km |
|----------------------------------|---------|
|                                  |         |
| SCRF Main Linacs                 | 22.2 km |
| RTML (bunch compressors)         | 2.8 km  |
| Positron source                  | 1.1 km  |
| BDS / IR                         | 4.5 km  |
|                                  |         |
| Damping Rings<br>(circumference) | 3.2 km  |

![](_page_21_Picture_0.jpeg)

### **SCRF Linac Technology**

![](_page_21_Picture_2.jpeg)

![](_page_21_Figure_3.jpeg)

![](_page_21_Picture_4.jpeg)

![](_page_21_Picture_5.jpeg)

| 1.3 GHz Nb 9-cellCavities       | 16,024      |
|---------------------------------|-------------|
| Cryomodules                     | 1,855       |
| SC quadrupole pkg               | 673         |
| 10 MW MB Klystrons & modulators | 426 / 461 * |

\* site dependent

![](_page_21_Picture_8.jpeg)

![](_page_22_Picture_0.jpeg)

### **Main Linac Parameters**

| Average accelerating gradient     | 31.5 (±20%)             | MV/m       |
|-----------------------------------|-------------------------|------------|
| Cavity Q <sub>0</sub>             | <b>10</b> <sup>10</sup> |            |
| (Cavity qualification gradient    | 35 (±20%)               | MV/m)      |
|                                   |                         |            |
| Beam current                      | 5.8                     | mA         |
| Number of bunches per pulse       | 1312                    |            |
| Charge per bunch                  | 3.2                     | nC         |
| Bunch spacing                     | 554                     | ns         |
| Beam pulse length                 | 730                     | μ <b>s</b> |
| RF pulse length (incl. fill time) | 1.65                    | ms         |
|                                   |                         |            |
| Pulse repetition rate             | 5                       | Hz         |
| Beam power per cavity (peak)      | 190*                    | kW         |
|                                   |                         |            |

\* at 31.5 MV/m

14-May-13 IPAC-13 Shanghai

![](_page_23_Figure_0.jpeg)

## **Central Region**

- 5.6 km region around IR
- Systems:

**Global Design Effort** 

- electron source
- positron source
- beam delivery system
- RTML (return line)
- IR (detector hall)
- damping rings
- Complex and crowded area

common tunnel

### **Central Region Integration**

![](_page_24_Figure_1.jpeg)

14-May-13 IPAC-13 Shanghai

İİĹ

### **Central Region**

**GeV** Positron Bea

![](_page_25_Picture_1.jpeg)

The central region beam tunnel remains a complex region.

Complete, detailed and integrated lattices are now available

 $\rightarrow$  component counts

250 GeV Spent Positron Bear

26

to Main Dump

 $\rightarrow$  cost estimate

Positron transfer

dump

Generic design used for geometry and generating component counts and CFS requirements.

CFS (particularly **CE**) solutions are site-dependent! Global Design Effort

IPAC-13 Shanghai

# **Positron Source (central region)**

![](_page_26_Figure_1.jpeg)

**Global Design Effort** 

14-May-13 IPAC-13 Shanghai

iic iic

#### 27

## **Polarised Electron Source**

- Laser-driven photo cathode (GaAs)
- DC gun

İİL

• Integrated into common tunnel with positron BDS

![](_page_27_Figure_4.jpeg)

14-May-13 IPAC-13 Shanghai

### **Beam Delivery System and MDI**

![](_page_28_Figure_1.jpeg)

electron Beam Delivery System

14-May-13 IPAC-13 Shanghai

ilr iit

#### Policy Speech by PM Abe (Japanese version of 'State of the Union') Feb 28, 2013

 'Japan is driving global innovation in cutting-edge areas, including among others the world's first production test of marine methane hydrate, a globally unparalleled rocket launch success rate, and our attempts to develop the most advanced accelerator technology in the world.'

![](_page_29_Picture_2.jpeg)

PM Abe at the 83<sup>rd</sup> session of Diet

14-May-13 IPAC-13 Shanghai

# **Tunnels in the Japanese Mountains**

#### **New Tunnel Shape**

RDR two tunnel design (2007)

**TDR** mountain sites

![](_page_30_Picture_4.jpeg)

![](_page_30_Picture_5.jpeg)

#### Japanese initiative for hosting the ILC

- Higgs Factory / Staged approach
- Developed through International Collaboration
- Linear Collider Collaboration (Lyn Evans Director)

14-May-13 IPAC-13 Shanghai

# **10 Diet Members visit ATF-2 (KEK)**

![](_page_31_Picture_1.jpeg)

14-May-13 IPAC-13 Shanghai

### **Staging and Upgrades:**

![](_page_32_Figure_1.jpeg)

14-May-13 **IPAC-13** Shanghai

İİL

33

### 250 GeV – Staged ILC

![](_page_33_Figure_1.jpeg)

<sup>1</sup>/<sub>2</sub> BDS magnets (instrumentation, CF etc)

1 RTML LTL

116

5km 125 GeV transport line

#### Extended tunnel/CFS already 500 GeV stage

14-May-13 IPAC-13 Shanghai

#### **Global Design Effort**

34

# **Final Remarks and Conclusions**

- <u>The TDR will complete the GDE mandate for</u> <u>the ILC .</u>
- Official release scheduled for 12 June 2013.
- The major milestones of the R&D program have been achieved; and a detailed technical design for the ILC has been produced, including a new value costing
- The ILC is ready for the next steps: Selecting a site and host country; forming a collaborative international project; and entering into a final engineering design.

14-May-13 IPAC-13 Shanghai