

Shanghai China 12-17 May 2013 Shanghai International Convention Center

Thomas Jefferson National Accelerator Facility

Outline

- Status of SRF
- Historic perspective on thin-film technology for SRF
- Implication of potential Q_0 improvements on future accelerators
- Conclusions

Review Article: C. E. Reece and G. Ciovati, "Superconducting Radio-Frequency Technology R&D for Future Accelerator Applications", *Rev. Accel. Sci. Technol.* **5**, 285 (2012)

SRF Accelerators in the World (> 5 cavities) ~ 2025

Thomas Jefferson National Accelerator Facility

Timelines for future projects

Thomas Jefferson National Accelerator Facility

SRF: a reliable technology

Beam availability at SNS [S.-H. Kim, TTC'12, Newport News, VA]:

- Average trip (downtime): < 1 trip/day (<5 min/day)
- Whole SCL system: 98 %, SCL cavities/cryomodules/CHL: 99.5 %

Survey of beam availability of SRF accelerators [*A. Hutton and A. Carpenter, PAC'11, New York, NY*]:

• Average downtime from SRF and support systems: 3.7% (mainly RF power and cryo)

All future projects proposed so far rely on bulk Nb technology

Accelerating gradient, L-Band β=1 cavities

• $E_{acc} > 50 \text{ MV/m}$ is yet to be achieved in "low B_p " multi-cell cavities

Jefferson Lab

- Average gradient specification of current and future projects is ~ 20 MV/m

Peak surface magnetic field, bulk Nb, 2 K

- Most current and future project B_p -spec is lower than highest measured value by a factor ~2.5
- Highest B_p achieved is within 10% of theoretical limit of the material

SRF cavities: future requirements?

- Improve yield (confidence) at high peak surface fields, particularly for low-β cavities [*Proton Linacs*]
 - Field emission control
 - Control of weld related defects
- For many envisioned future SRF accelerator projects [*ERL*, *CW Linacs*], the push towards increasing accelerating gradients is constrained by the increase in cost from cryogenics and RF power. The push towards **higher** Q_0 will be more beneficial.

Q₀(2 K), bulk Nb

- Highest Q_0 achieved is at the theoretical limit of the material
- Typically Q_0 decreases with increasing rf field

Nb cavities with exceptionally high $Q_0(2 \text{ K})$

• Recent R&D efforts towards increasing Q₀ are already showing very encouraging results!!!

Ingot Nb technology

- Cavities built with ingot Nb achieved:
 - Highest accelerating field (~46 MV/m) in a multicell cavity [*W. Singer et al., Phys. Rev. ST Accel. Beams.* 16, 012003 (2013)]
 - Highest Q₀-value at 2.0 K and medium gradient (~20 MV/m) [*P. Dhakal et al., Phys. Rev. ST Accel. Beams.* 16, 042001 (2013)]
- Significant material cost savings are expected, particularly if Ta content up to ~1500 wt.ppm can be used

Mitigate steep rise in price of high-RRR, fine-grain Nb in the last 3 years

SRF science of Nb: unknowns

As the cavity performance gets closer to theoretical limits, it is more difficult to isolate a single cause for increased surface resistance

What's better than Nb?

- s-wave superconductor
- Higher T_c , higher energy gap, higher H_{sh}
- Low normal-state resistivity

Material	T _c (K)	H _c [T]	H _{c1} [mT]	H _{c2} [T]	λ (0) [nm]	∆ [meV]	H _{sh} [mT]
Nb	9.2	0.2	170	0.4	40	1.5	0.24
NbN	16.2	~0.23	20	15-25	200	2.6	~0.19
(NbTi)N	17.5	~0.28	30	~20	~200	3.0	~0.24
Nb₃Sn	18	~0.5	40	30	85	3.1	~0.42
MgB ₂	40	~0.32	20-60	3.5-60	140	2.3; 7.1	~0.27

$$\frac{H_{\rm sh} \approx 1.2H_{\rm c}}{H_{\rm sh} \approx 0.84H_{\rm c}} \quad \kappa \sim 1, \, \mathrm{T} \sim \mathrm{T_{c}}$$

Note: SC properties of thin films can change significantly depending on the preparation method

The H_{c1} conundrum

- Theoretically, the field at which the vortex-free state becomes unstable is $H_{\rm sh}$
- However, $R_s(H_{sh}) \sim R_n [\varepsilon_g(H_{sh})=0$ in clean limit, $\varepsilon_g(H_{sh})=0.32\Delta_0$ in dirty limit]. [*F. Pei-Jen Lin and A. Gurevich, Phys. Rev. B* **85**, 054513 (2012)]
- Defects in technical SC films could lower the surface barrier down to H_{c1} causing strong rf losses above ~20-50 mT

Multilayer approach

• Enhancement of H_{c1} in films with thickness $d < \lambda$ [A. A. Abrikosov, Sov. Phys. JETP 19, 988 (1964)] $2\phi_0 \left(\frac{d}{d} - \frac{d}{d} \right)$

$$H_{c1} = \frac{2\phi_0}{\pi d^2} \left(\ln \frac{d}{\xi} - 0.07 \right)$$

• S-I-S films with $d < \lambda$ on Nb [A. Gurevich, Appl. Phys. Lett. 88, 012511 (2006)]

Enhancement of H_{c1} in very-thin films

• Experimental confirmation of H_{c1} enhancement in "verythin" ($d < \lambda$) films was found for Nb, NbN and MgB₂ samples by DC magnetization measurements

Thin-film R&D: historic perspective

• Nb/Cu films at CERN

Thin-film R&D: historic perspective

• Nb/Cu films at INFN-Legnaro

Nb₃Sn: a case of missed opportunity

P. Kneisel, "History of Nb₃Sn Developments for Superconducting RF Cavities – A Review", JLab Technical Note TN-12-016

• Activities at many labs throughout the world (Siemens AG, Kernforschungszentrum Karlsruhe, Uni Wuppertal, JLab/Univ. Wuppertal, CERN, Cornell Univ., SLAC, Stanford) since 1973

After ~14 years, R&D activities have re-started at Cornell Univ. and JLab

Thin film R&D activities: recent history

Nb	Nb and A15 compounds	MgB ₂
2002	2005	2003
JLab: energetic deposition by ECR 2005 CERN: HiPiMS 2010 JLab/AAS, Corp: Coaxia energetic deposition LBNL: HiPiMS present	INFN-Legn NbN, V ₃ Si 2008 ANL: NbN Saclay: N 2010 UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	aro: Nb ₃ Sn, PSU/Temple Univ.: HPCVD 2 V. (NbTi)N, NbSi IbN IbN NbTi)N NbTi)N IbN I

- >~5 years R&D already
- Mostly techniques development, very few RF measurements

Thin film development: future outlook

Might need a large *accelerator project* or small accelerator project with large market potential which *have to be built with specs. that bulk Nb technology cannot satisfy* (e.g. Muon Collider?)

Nb at 2 K or Nb₃Sn at 4.2 K?

• Suppose that SRF technology will evolve to meet the following specs. on multi-cell cavities

$$- Q_0 = 4 \times 10^{10}$$
 at 2 K, 1.5 GHz, 70 mT (Nb)

 $- Q_0 = 1 \times 10^{10}$ at 4.2 K, 1.5 GHz, 70 mT (Nb₃Sn)

Which will have greater impact?

ADS and Light Sources

- Consider the impact of Nb cavity with $Q_0(70 \text{ mT}, 2 \text{ K}) = 4 \times 10^{10}$ or Nb₃Sn cavity with $Q_0(70 \text{ mT}, 4.2 \text{ K}) = 1 \times 10^{10}$ on:
 - two possible accelerators which would lead to a wide-spread use of SRF:
 - 1 GeV, 20 mA, CW proton Linac for Accelerator Driven Systems (ADS)
 - Compact Light Source (CLS)
 - ➤ a "one-of-a-kind" research accelerator: 2.4 GeV, 0.3 mA, CW electron Linac for Next Generation Light Source (NGLS)

Estimates of power consumption

- $\mathbf{P}_{\mathbf{diss}} = E_{\mathrm{acc}}^2 L^2 / (R/Q) Q_0 \propto 1/Q_0$
- Cryoplant overcapacity factor = 1.54
- COP_{inv} from

Thomas Jefferson National Accelerator Facility

Example: CW Linac for ADS

• 20 mA, CW, SNS-style Linac with a β =0.61 section (186 MeV \rightarrow 375 MeV and a β =0.81 section (375 MeV \rightarrow 1 GeV) with 805 MHz elliptical cavities

	β=	0.61	β=0.81		
	Nb at 2 K	Nb ₃ Sn at 4.2 K	Nb at 2 K	Nb ₃ Sn at 4.2 K	
$E_{acc} (B_p = 70 \text{ mT})$	12 MV/m		15.9		
No. of cells		6	5		
No. cavities	3	30	60		
No. cryomodules	1	0	15		
Power Coupler RF Power	135	kW	220 kW		
Q ₀ (70 mT)	4×10 ¹⁰	1×10 ¹⁰	4×10 ¹⁰	1×10 ¹⁰	
Avg. dynamic losses/module	11.3 W	45.2 W	27 W	108.3 W	
Static losses/module	20 W	60 W	20 W	60 W	

	Nb at 2 K	Nb ₃ Sn at 4.2 K	
Total heat load	1019 W	3576 W	
Cryo-plant cooling capacity	1.57 kW	5.5 kW	
Efficiency	2000 W/W	350 W/W	
AC Power for Cryo	3.1 MW	1.9 MW	
RF Power	20 MW		
AC Power for RF (60% efficiency)	33 MW		

Compared to ~4.5 MW with Q_0 of $8{\times}10^9$ achievable today with Nb at 2.0 K

Cost of 4.2 K cryo-plant ~20% less than the 2 K one

AC Power for Cryo ~10% AC Power for RF

Example: Compact Light Source

- CW, 1 mA avg., 20 MeV electron Linac for Compton Sources [G. Krafft and G. Priebe, Rev. Accel. Sci. Tech. 3, 147 (2010) 147]
- Operation at 4.5 K is the only option (operational and capital cost of small 2 K cryo-plant is too high)
- Bulk Nb cavities at low-frequency (400 MHz) allows building such accelerator with < 200 W cooling power at 4.5 K

	Current design (Nb)	Nb ₃ Sn
Frequency	400 MHz	1.5 GHz
No. of cells	3	7
No. cavities	2	
Q ₀ (4.5 K)	3.5×109	1×10 ¹⁰
Accelerating gradient	7.7 MV/m	12 MV/m
R/Q	468 Ω	869 Ω
Total dynamic losses	88 W	17 W

With Nb₃Sn:

- lower operating and cryoplant cost
- lower cavities material cost
- smaller cryostat

Example: NGLS

• 2.4 GeV, 0.3 mA, CW electron Linac for NGLS with 1.3 GHz ILC-type cavities [J. Cortlett, "NGLS Outline and Functional Requirements", Workshop on CW

SCRF Linacs for X-ray Laser Applications, Fermilab, September 26, 2012

	Current design	High Q Nb at 2 K	Nb ₃ Sn at 4.2 K
Operating temperature	1.8 K	2.0 K	4.2 K
Average operating gradient		$\sim 16 \text{ MV/m}$	
Average Q0	2×10 ¹⁰	4×10^{10}	1×10^{10}
No. cavities		189	
No. cryomodules		27	
Dynamic losses/module	114 W	57 W	228 W
Static losses/module	6 W	6 W	18 W
Cryo-plant cooling capacity (with overcapacity factor of 1.5)	4.86 kW	1.7 kW	6.64 kW
Efficiency	1000 W/W	2000 W/W	350 W/W
AC Power for Cryo	4.86 MW	3.4 MW	2.3 MW
AC Power for RF		~6 MW	
Relative cost of Cryo-Plant	1.5	~1.2-1.3	

Compared to current design:

- ~20-30% cost reduction in both capital and operational costs with high-Q Nb at 2.0 K
- ~50% cost reduction in both capital and operational costs with Nb₃Sn at 4.2 K

Conclusions (1)

- SRF is the technology of choice for new accelerators for scientific research
- Cavities based on bulk Nb technology satisfy the requirements of SRF accelerators for the next decade
 - Current specs are at ~half of the Nb potential
 - A significant margin could be gained with advances to improve reliability at high-Q and high-field

• Ingot Nb has emerged as a better option than standard finegrain Nb for improved performance and reduced cost

Conclusions (2)

• Nb R&D over the last decade (ingot Nb, furnace treatments) show that the science of Nb for SRF is not at the end

• SRF-based accelerators could become widespread tools for electric power generation (ADS) and for compact light sources

Conclusions (3)

- Efforts in thin-film developments are been pursued by many labs/universities since the past 5-10 years
- In few cases, coating of real cavities have begun Sustained effort for at least the next 5-10 years and the "drive" of a real accelerator project which can only be built with cavities other than Nb might be needed.
- Nb₃Sn is (again) one of the most promising alternatives to bulk Nb
 - if new experiments will confirm limits in the Siemens/Wuppertal technique to produce cavities with $\sim 1 \times 10^{10}$ at 4.2 K and E_{acc} ~ 15 MV/m, a "minimalistic" multi-layer approach [bulk Nb/insulator/thin Nb₃Sn] could be a possible solution (however this cannot use the Siemens/Wupp. technology)
- Improvements in efficiency with bulk Nb at 2 K and thin-films at 4.2 K would significantly reduce cost

Acknowledgements

- P. Kneisel, G. Myneni, A. Hutton, R. Rimmer, R. Geng, D. Arenius, R. Ganni, F. He, J. Mammosser, A-M. Valente-Feliciano, *JLab*
- E. Kako, *KEK*
- S-H. Kim, ORNL

Thank you for your attention

