

Recent LHC Physics Results and their Impact on Future HEP Accelerator Programme

Sergio Bertolucci

Where we stand

 There is a new boson of mass ~125 GeV, with properties consistent with the SM Higgs, within the current uncertainties. More data needed to ascertain the nature of this object.

A new particle: no doubt that it is there...

By now we can establish it with a single decay channel! e.g. $H \rightarrow ZZ \rightarrow 4I$

... it prefers 0+ quantum numbers

... its mass is measured to .5%

...and the signal strength is compatible with a SM Higgs

Where we stand

- There is a new boson of mass ~125 GeV, with properties consistent with the SM Higgs, within the current uncertainties. More data needed to ascertain the nature of this object.
- ✓ So far, no indications of BSM physics from direct searches at the High E Frontier:
 - colored SUSY particles (first generations) ruled out up to O(1 TeV), for a light LSP;
 - "natural" SUSY probed at level of a few hundred GeV of 3rd generation spartners;
 - exotica: heavy objects probed up to masses of 2-3 TeV;
 - a lot of room still to be explored, 14 TeV will be essential!

BSM: we have searched...

eg. exclusions plots shown at Moriond QCD 2012....

The big picture

SUSY health

- The experiments have already explored a very vast range of masses and parameters
- Though, too early to declare SUSY's death, since there remain important parameter regions to be explored, and because
 - Difficult or impossible to give "absolute" limits, since basically always assumptions involved
 - limits quickly degrade or disappear when raising m(LSP) beyond several hundreds of GeV
 - inclusive searches often assume degenerate 1st and 2nd generation squarks. Limits decrease (by several hundreds of GeV) if this is given up
 - simplified models make strong assumptions on branching ratios, masses of intermediate states
 - theory uncertainties (cross sections/scales/pdfs, initial state radiation)

Where we stand

- There is a new boson of mass ~125 GeV, with properties consistent with the SM Higgs, within the current uncertainties. More data needed to ascertain the nature of this object.
- So far, no indications of BSM physics from direct searches at the HEF:
 - colored SUSY particles (first generations) ruled out up to O(1 TeV), for a light LSP;
 - "natural" SUSY probed at level of a few hundred GeV of 3rd generation spartners;
 - exotica: heavy objects probed up to masses of 2-3 TeV;
 - a lot of room still to be explored, 14 TeV will be essential!
- Very rich harvest coming from LHC PbPb and pPb runs

ALICE: Correlations

12

Where we stand

- There is a new boson of mass ~125 GeV, with properties consistent with the SM Higgs, within the current uncertainties. More data needed to ascertain the nature of this object.
- So far, no indications of BSM physics from direct searches at the HEF:
 - colored SUSY particles (first generations) ruled out up to O(1 TeV), for a light LSP;
 - "natural" SUSY probed at level of a few hundred GeV of 3rd generation spartners;
 - exotica: heavy objects probed up to masses of 2-3 TeV;
 - a lot of room still to be explored, 14 TeV will be essential!
- Very rich harvest coming from LHC PbPb and pPb runs
- Very few anomalies in the world-wide HEF data, no strongly smoking gun

LHCb rare decay $B_s \rightarrow \mu\mu$

Where we stand

- There is a new boson of mass ~125 GeV, with properties consistent with the SM Higgs, within the current uncertainties. More data needed to ascertain the nature of this object.
- So far, no indications of BSM physics from direct searches at the HEF:
 - colored SUSY particles (first generations) ruled out up to O(1 TeV), for a light LSP;
 - "natural" SUSY probed at level of a few hundred GeV of 3rd generation spartners;
 - exotica: heavy objects probed up to masses of 2-3 TeV;
 - a lot of room still to be explored, 14 TeV will be essential!
- Very rich harvest coming from LHC PbPb and pPb runs
- Very few anomalies in the world-wide HEF data, no strongly smoking gun
- The SM (in terms of its QCD and EWK parts) works perfectly well, up to the % level, at the highest energies probed so far (7 and 8 TeV).

W/Z (+Jet) Production

Inclusive

🕯 incl. cross sections:

- experimental precision at the 1% level, especially for ratio-observables
- excellent agreement with NNLO QCD, both at 7 and 8 TeV
- many diff. distributions measured
- 🖗 V+jets:
- "triumph" for MCs with matched matrix elements and parton showers
- also multi-leg NLO calculations available by now
- confidence in background predictions for many searches

- we know that the Standard Model is not complete because:
- It doesn't solve the hierarchy problem
- It has no explanation for dark matter/dark energy
- Its mechanisms of CPV are too small to explain matter/antimatter imbalance
- It cannot provide a QFT of gravitation

...etc

We have the tools to challenge it

- At the energy frontier
- At the intensity frontier
- At the precision frontier

LHC, the next 20 years

Luminosity: Best Guess for the next 10 years

- MIIIIIAN -----

CERN

Luminosity: Best Guess for the next 10 years

Luminosity: Best Guess for the next 10 years

L. MIIIIASK ----

HL-LHC The Goal

The main objective of HL-LHC is to implement a hardware configuration and a set of beam parameters that will allow the LHC to reach the following targets:

- A luminosity of 5×10³⁴ cm⁻²s⁻¹ with leveling
- Implies a "Virtual" peak luminosity of >10+35 cm-2s-1
- > An integrated luminosity of **250 fb⁻¹** per year, enabling the goal of **3000 fb⁻¹** twelve years after the upgrade.

- \checkmark Allow design integrated Luminosity for a lower peak L, and less pile up for the experiments
- ✓ Lower peak heat deposition in the magnets

Parton luminosities

Parton luminosities

Extending the reach...

- Weak boson scattering
- Higgs properties
- Supersymmetry searches and measurements
- Exotics
- t properties
- Rare decays
- CPV
- ...etc

Couplings fit at HL-LHC

		Uncertainty (%)						
	Coupling	Coupling 300 fb^{-1}		3000 fb^{-1}				
		Scenario 1	Scenario 2	Sce	enario 1	Scenario	2	
CMS	κ_{γ}	6.5	5.1		5.4	1.5		
	κ_V	5.7	2.7		4.5	1.0		
	κ_g	11	5.7		7.5	2.7		
	κ_b	15	6.9		11	2.7		
	κ_t	14	8.7	ļļ	8.0	3.9		
	$\kappa_{ au}$	8.5	5.1		5.4	2.0		

CMS Projection

Assumption NO invisible/undetectable contribution to Γ_{H} :

- Scenario 1: system./Theory err. unchanged w.r.t. current analysis
- Scenario 2: systematics scaled by 1/sqrt(L), theory errors scaled by 1/2
- \checkmark $\gamma\gamma$ loop at 2-5% level
- ✓ down-type fermion couplings at 2-10% level
- ✓ direct top coupling at 4-8% level
- ✓ gg loop at 3-8% level

Coupling Ratios Fit at HL-LHC

A lepton collider: a decisive asset...

..if

- Can be decided/built soon
- It might start at 250 Gev, but it should be upgradable at 500 GeV, with a possible extension to 1 TeV c.m.

Best candidate: the International Linear Collider:

- Mature design
- TDR delivered
- Japanese community has submitted to the government a request to host it.

LHC vs LC: "signal strength"

ILC: not only a precision machine

- Great impact in exploring the EWK part of Supersimmetry, in a region which might be not accessible at the LHC, because the unfavorable S/B.
- A fundamental contribution in the precision studies of the W and Z bosons and the top quark.

The joint information coming from LHC and ILC will be a "conditio sine qua non" to enable the next particle accelerator at the energy frontier

The intensity/precision frontier

It is very important to continue to refine the search of New Physics, by exploiting the virtual loops:

a large set of fundamental measurements on LFV, rare $k \rightarrow \pi v v$ decays, flavor physics, CPT are underway/being planned at PSI, KEK, FERMILAB, JPARC, BINP, CabibboLab and at CERN.

A new generation of experiments trying to measure a nonzero EDM for protons, neutrons, atoms are also been planned in US, Europe and Asia

The success of most of this experiments relies on a robust development of the hosting accelerators

The intensity/precision frontier

It is very important to continue to refine the search of New Physics, by exploiting the virtual loops:

a large set of fundamental measurements on LFV, rare $k \rightarrow \pi v v$ decays, flavor physics, CPT are underway/being planned at PSI, KEK, FERMILAB, JPARC, BINP, CabibboLab and at CERN.

A new generation of experiments trying to measure a nonzero EDM for protons, neutrons, atoms are also been planned in US, Europe and Asia

The success of most of this experiments relies on a robust development of the hosting accelerators

beyond LHC ?

Not only luminosity: High Energy LHC

Preliminary HE-LHC - parameters

	nominal LHC	HE-LHC
beam energy [TeV]	7	16.5
dipole field [T]	8.33	20
dipole coil aperture [mm]	56	40-45
#bunches / beam	2808	1404
bunch population [10 ¹¹]	1.15	1.29
initial transverse normalized emittance	3.75	3.75 (x), 1.84 (y)
[µm]		
number of IPs contributing to tune shift	3	2
maximum total beam-beam tune shift	0.01	0.01
IP beta function [m]	0.55	1.0 (x), 0.43 (y)
full crossing angle [µrad]	285 (9.5 σ _{x,y})	175 (12 σ _{x0})
stored beam energy [MJ]	362	479
SR power per ring [kW]	3.6	62.3
longitudinal SR emittance damping time [h]	12.9	0.98
events per crossing	19	76
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	1.0	2.0
beam lifetime [h]	46	13
integrated luminosity over 10 h [fb ⁻¹]	0.3	0.5

Prelim. Projections : direct searches

from the ATLAS/CMS input documents to the strategy process

Thinking BIG

- HE-LHC dipole design will piggy back on the high gradient quadrupole R&D needed for HL-LHC
 - Would allow an increase in energy by factor of 2-2.5
- SHE-LHC (??SSC) needs a 80km tunnel
 - In conjunction with the high field magnets would allow a factor of (2-2.5)x(80/27) = 6-7.5 times LHC (42-52 TeV/beam)

Thinking BIG

Lake Geneva This large tunnel would also allow e+e- and e-p collisions as well as pp collisions Geneva Saleve LEGEND LHC tunnel HE_LHC 80km option potential shaft location

> mage 8 2312 Gooleye rage 6 2012 IGN France

From Choices to Choice

- Japan Roadmap published
- Roadmap discussion (US) in progress, completes next year
- Update of the European Strategy for Particle Physics in 2012/13 = Strategy of Europe in a global context
 - Official approval in Bruxelles, 29-30 May 2013
- Use as 1st step to harmonize globally Particle Physics Strategy

...we will need to be prepared: to this extent, not only generic R&D, but accelerator complex design studies play a fundamental role for the future of the field.

- The size, cost and complexity of our projects requires a very careful period of studies, prototyping, industrialization.
- A number of projects (CLIC,LHeC, ProjectX, Muon Collider, Tau-charm factory, TLEP, SHELHC, etc, are at different stages of this path:

we should find the resources to bring them all forward

- 2010-2012: extraordinary years!
- But we are just at the beginning of a long journey.
- By now, experimental results are dictating the agenda of the field.
- We need to accelerate the reflection on next steps
- No time to idle: a lot of work has to be done

We will need

- Flexibility
- Preparedness
- Visionary global policies

...and a bit of luck!

Thank you!

