

Overview of the World-wide RIB Facilities - Status and Challenges

(RIB: Radioactive Isotope Beam or Rare Isotope Beam)

Contents

Introduction Production of RIB RIB Facilities in the World

> Osamu Kamigaito RIKEN Nishina Center

1. Introduction – Nuclear chart

"Nuclear map": 1st 2+ Energy of known isotopes* MeV

"Nuclear map": 1st 2+ Energy of known isotopes* MeV

"Nuclear map": 1st 2+ Energy of known isotopes* MeV

"Nuclear map": 1st 2+ Energy of known isotopes* MeV

2. How to make RIB

3. RIB facilities in the world

3. RIB facilities in the world

RIKEN RI Beam Factory

Y. Yano, NIM B261 (2007) 1009

•3 injectors and 4 booster cyclotrons

- •3 acceleration modes to accommodate all ion species
- •3 simultaneous users (RILAC2-RIBF, RILAC-GARIS, AVF)

RIKEN RI Beam Factory

Y. Yano, NIM B261 (2007) 1009

•3 injectors and 4 booster cyclotrons

- •3 acceleration modes to accommodate all ion species
- •3 simultaneous users (RILAC2-RIBF, RILAC-GARIS, AVF)

RIKEN RIBF, Japan

K2600-MeV SRC

RIKEN RIBF, Japan

K2600-MeV SRC

World's first superconduting RING cyclotron B_{max} = 3.8 T, Voltage gain = 640 MV (cw) Total weight = 8,300 tons

H. Okuno et al., IEEE Trans. Applied Superconductivity, 17 (2007) 1063

fRC upgraded (2012) K570 => K700 MeV

He-gas stripper (2012) (Imao, ACFA/IPAC'13 prize)

K. Yamada, IPAC'12, K Suda, NIMA in press

Evolution of beam intensities at RIBF

H. Okuno, N. Fukunishi, O. Kamigaito, Prog. Theor. Exp. Phys. 03C002 (2012).

Evolution of beam intensities at RIBF

H. Okuno, N. Fukunishi, O. Kamigaito, Prog. Theor. Exp. Phys. 03C002 (2012).

FRIB Accelerator Design Requirements

- Delivers FRIB accelerator as part of a DOE-SC national user facility with high reliability & availability
- Accelerate ion species up to ²³⁸U with energies of no less than 200 MeV/u
- Provide beam power up to 400 kW <= multi charge</p>
- Satisfy beam-on-target requirements
- Energy upgrade by filling vacant slots with 12 SRF cryomodules
- Maintain ISOL option
- Upgradable to *multiuser* simultaneous operation of light/heavy ions with addition of a light-ion injector

(Courtesy of Dr. Wei)

Quarter-wave (β=0.085) and Half-wave (β=0.53) Resonators Qualified for FRIB Production

2K RF Test Summary for ReA3 β =0.085 QWRs

Ε

(MV/m)

Rare Isotope ⁷⁶**Ga Produced and Accelerated** Acceleration Using RFQ and β=0.041 Cryomodules

0

- Superconducting cyclotrons accelerate ⁷⁶Ge beam to 130 MeV/u
- ⁷⁶Ga produced and stopped in gas cell
- Charge Breeding in the EBIT Source
- Re-acceleration in the ReA accelerator

Liquid Lithium Stripping Film Successfully Tested with Twice FRIB Beam Power Density

 LEDA ion source from Los Alamos restored at MSU; *lithium film* sustained beam power test at Argonne using the proton beam from

the LEDA

Proton beam (65 kV, 4 mA, σ = 0.7 mm in the best focused condition) impinging on the liquid lithium film, ~ 10 µm thick, moving at 50 m/s.

Photos showing the trail of heated lithium flow lines. By moving the impact point from left to right, the flow lines can be visualized.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

(Courtesy of Dr. Wei)

ARIEL Project: 10-Year Vision

Substantially expand RIB program with:

- three simultaneous beams
- increased number of hours delivered per year
- new beam species
- increased beam development capabilities

Implementation: Complementary *electron linac* driver for photo-fission *New target stations* and front end *New proton beamline* Staged installation (Courtesy of Dr. Merminga)

Image: With the second state of the

Module1

(2014)

30 MeV, 100 kW

ICM

300 kV Gun

Possibility for other applications (FEL, ERL) (Courtesy of Dr. Merminga)

50 MeV, 500 kW

(>2015)

RIUMF

SRF Cavities

(Courtesy of Dr. Merminga)

Single-cell cavity status:MuDec 2011: 7 out of 77-cPAVAC/TRIUMF single-cells9-cmeet Q_0 requirements1

1.3 GHz SINGLE CELL TRIUMF CAVITY TEST (12/06/2011) 1.0E+10 1.0E+00 1.0E+000 1.0E+000 1.0E+000 1.0E+000 1.0E+000 1.0E+000 1.0E+000 1.0E+000 1.0E+

Multi-cell cavity fabrication by PAVAC (BC): 7-cell Cu cavity delivered Feb 2012 9-cell Nb cavity delivery May 2013

High Power RF Systems

IOT transmitter routine operation at 30 kW cw RF input

(Courtesy of Dr. Merminga)

HP Coupler Conditioning Station: reached 8 kW cw, up to 10kW peak 500µs

1.3 GHz 300 kW klystron purchase from CPI in coordination w/ HZB. Delivered 3/2013 600kW 65kV HVPS awarded to Thomson Broadcast. Delivery 7/2013

ARIEL Construction – April 2013

(Courtesy of Dr. Merminga)

RIB Annex

Hot Cell Operator platform

CERN ISOLDE

Near Future: HIE-ISOLDE project

Energy Upgrade: The HIE-ISOLDE project construction of the SC LINAC to upgrade the energy of the post-accelerated radioactive ion beams to 5.5 MeV/u in 2015 and 10 MeV/u by 2017 • Approved Dec 2009

- Offically started Jan 2010
- Yacine Kadi project Leader
- Budget 40 M\$

Intensity Upgrade: The design study for the intensity upgrade, also part of HIE-ISOLDE, started in 2011, and addresses the technical feasibility and cost estimate for operating the facility at 10 kW once LINAC4 and PS Booster are online.

SC-LINAC Installed in 3-phases

✓ HIE STAGE 2B WITH CHOPPER LINE

Cavity prototypes designed & built @ CERN

sputtering tests on samples

(Courtesy of Dr. Borge)

SPIRAL2-GANIL Layout

(Courtesy of Dr. Lagniel)

SPIRAL2-GANIL Layout

SPIRAL2 under construction:

Phase 1: High intensity stable beams in 2014 + Experimental rooms (S³ + NFS)
Phase 2: High intensity *Radioactive* Ion Beams (RIBs)

SPIRAL2-GANIL Layout

SPIRAL2 under construction:

Phase 1: High intensity stable beams in 2014 + Experimental rooms (S³ + NFS)

Phase 2: High intensity *Radioactive* Ion Beams (RIBs)

Light ion source performances

- Up to 14.5 mA at the source exit, 12mA @ the LEBT end, 79% D⁺
- 90 µA also measured, stable, with source tuning (9->2.4mA) without gas injection, then line tuning and the use of slits
- Measurement at RFQ injection point

Light ion source performances

- Up to 14.5 mA at the source exit, 12mA @ the LEBT end, 79% D⁺
- 90 µA also measured, stable, with source tuning (9->2.4mA) without gas injection, then line tuning and the use of slits

Nominal: 0.22 π.mm.mrad

ε _{xx} ,	0.23 π.mm.mrad
β _{xx} ,	0.095 π.mm/mrad
α _{xx} ,	0.99
ε _{yy} ,	0.22 π.mm.mrad
β _{yy} ,	0.10 π.mm/mrad
α _{yy} ,	1.17

(Courtesy of Dr. Lagniel)

Beam measured <u>numerically</u> transported through RFQ with no losses nor emittance growth

SC LINAC

High beta cavity status

- Company RI GmbH (ACCEL) selected for the 16 series cavities (14 needed at first)
 - All cavities delivered
 - All cavities tested, with specs OK
 - Chemistry done in Orsay
 - Only one cavity needed repair (too high in frequency at first, local chemistry in H field area)
- Cryostats all manufactured by SDMS
- Pressure sensitivity : < 8 Hz/mbai 1.E+10

(Courtesy of Dr. Lagniel)

Construction

(Courtesy of Dr. Lagniel)

The Layout of HIAF Complex

The Layout of HIAF Complex

Acknowledgements

Drs. Maria Borge, Robin Ferdinand, Nobuhisa Fukunishi, Jean-Michel Lagniel, Felix Marti, Lia Merminga, Hiroki Okuno, Hiroyoshi Sakurai, Jie Wei, Hongwei Zhao

and

Members of the Accelerator Group, RIKEN Nishina Center