

Beam Dynamics and Collective Effects in "Ultimate" Storage Rings

Masaru TAKAO JASRI/SPring-8

Outline

- Introduction
- Intra-beam scattering
- Touschek lifetime
- Fast ion instability
- Microwave instability

Diffraction limited light source for 1 Å-wavelength

 Φ : total photon flux,

$$\Sigma_{x,y} = \sqrt{\sigma_{x,y}^2 + \sigma_p^2},$$

$$\Sigma'_{x,y} = \sqrt{\sigma'_{x,y}^2 + \sigma'_p^2}$$

Diffraction limited operation

Electron beam emittance

$$\lambda_{y,y} < \frac{\lambda}{4\pi}$$
 = 10 pm.rad at 1 Å-wavelengt

SPring.

 ${\cal E}_{r}$

Emittances of Present and Future LS

- Traditional impedances don't change with the beam emittance, which are not included in this talk.
- Smaller radius of vacuum chamber and gap of insertion device (ID) required by USR enhance the impedances, so stronger feedback may be needed.
- Shortening of bunch length due to lower emittance also enhances the impedance effects, but they could be relaxed by stretching bunch, e.g. by higher harmonic cavity.

Outline

Introduction

- Intra-beam scattering
- Touschek lifetime
- Fast ion instability
- Microwave instability

 Multiple Coulomb scattering in bunch gives statistical excitation as well as quantum radiation.

IBS growth rate

 $\frac{1}{T_p} = \frac{1}{\sigma_p} \frac{d\sigma_p}{dt} \qquad \frac{1}{T_x} = \frac{1}{\varepsilon_x^{1/2}} \frac{d\varepsilon_x^{1/2}}{dt} \qquad \frac{1}{T_y} = \frac{1}{\varepsilon_y^{1/2}} \frac{d\varepsilon_y^{1/2}}{dt}$

Calculated by

1) Piwinski w/ using classical theory

2) Bjorken-Mtingwa w/ using quantum filed theory

Bane's high energy approximation formula

Steady state beam properties

$$\sigma_p = \frac{\sigma_{p0}}{1 - \tau_p / T_p}, \quad \varepsilon_x = \frac{\varepsilon_{x0}}{1 - \tau_x / T_x}, \quad \varepsilon_y = \frac{\varepsilon_{y0}}{1 - \tau_y / T_y}$$

τ_i: radiation damping times<math>
σ_{p0}, ε_{x,y0}: beam properties w/o IBS

- Steady state beam properties are included in IBS growth rates $T_{p,x,y}$, so they are solved iteratively.
- Local growth rates are function of lattice parameters, so calculation of total growth rates requires average around the ring.
- Agreement of Piwinski and Bjorken-Mtingwa formulae and validity of Bane's approximation are well confirmed by numerical study for ATF.

Comparison of calculation with measurement at ATF

Parameters for SPring-8 / SPring-8 II

	SPring-8	SPring-8 II	unit
Energy	8 GeV	6 GeV	GeV
Circumference	1435.95	1435.95	m
Total stored current	100	300	mA
Natural emittance	3500	67	pm.rad
Relative rms energy spread	0.109	0.096	%
Natural rms bunch length	13	5.4	ps
Momentum compaction	1.67 x 10 ⁻⁴	1.55 x 10⁻⁵	
Synchrotron tune	0.01	0.004	
Transverse radiation damping time	8.3	14.4	ms
Longitudinal radiation damping time	4.15	7.2	ms

As of USR Workshop @ Beijing Oct. 2012

2013-May-17

SPring. 8

Intra-beam Scattering at SPring-8

 Beam size, bunch length measurement for beam energy 8 GeV, 6 GeV, 4 GeV

Energy dependence of IBS at SPring-8

• Horizontal emittance for $I_b = 1 \text{ mA vs.}$ electron energy

Current dependence of IBS at SP-8 II

Outline

- Introduction
- Intra-beam scattering
- Touschek lifetime
- Fast ion instability
- Microwave instability

 Large Coulomb scattering, transferring transverse momenta to logitudinal, leading to beam loss.

Full (2-dim) Touschek lifetime formula by Piwinski $\frac{1}{\tau} = \frac{r_0^2 c N_b}{8\sqrt{\pi}\gamma^4 \varepsilon_x \varepsilon_y \sigma_p \sigma_\ell} \left\langle \sigma_H \int_{\delta_m^2}^{\infty} \frac{du}{u^{3/2}} \left(\frac{u}{\delta_m^2} - 1 - \frac{1}{2} \ln \frac{u}{\delta_m^2} \right) e^{-B_1 u} I_0 (B_2 u) \right\rangle$ $\varepsilon_{x,y} : \text{transverse emittance, } \sigma_p : \text{relative momentum spread,}$ $\sigma_\ell : \text{bunch length, } \delta_m : \text{momentum acc., } I_0 : \text{modefied Bessel func.}$

$$B_{1} = \frac{1}{\gamma^{2}} \left[\frac{\beta_{x}}{\varepsilon_{x}} + \frac{\beta_{y}}{\varepsilon_{y}} - \sigma_{H}^{2} \left(\frac{\phi_{x}^{2}}{\varepsilon_{x}^{2}} + \frac{\phi_{y}^{2}}{\varepsilon_{y}^{2}} \right) \right] / 2, B_{2} = \sqrt{B_{1}^{2} - \frac{\sigma_{H}^{2} \beta_{x} \beta_{y}}{\gamma^{4} \varepsilon_{x} \varepsilon_{y}}} \left(\frac{1}{\sigma_{p}^{2}} + \frac{\eta_{x}^{2}}{\varepsilon_{x} \beta_{x}} + \frac{\eta_{y}^{2}}{\varepsilon_{y} \beta_{y}} \right)$$
$$\frac{1}{\sigma_{H}^{2}} = \frac{1}{\sigma_{p}^{2}} + \frac{H_{x}}{\varepsilon_{x}} + \frac{H_{y}}{\varepsilon_{y}}, H_{x,y} = \gamma_{x,y} \eta_{x,y}^{2} + 2\alpha_{x,y} \eta_{x,y} \eta'_{x,y} + \beta_{x,y} \eta'_{x,y}^{2}$$
$$\phi_{x,y} = \alpha_{x,y} \eta_{x,y} + \beta_{x,y} \eta'_{x,y}$$
 IPAC'13

SPring.

15

Touschek Lifetime on Beam Properties

Lifetime for 1 mA / bunch @ SPring-8

Touschek Lifetime at SPring-8

 In practical, momentum acceptance is also limited by transverse dynamics, since particles scattered at nonzero dispersion start to oscillate around dispersion with a large amplitude.

Improving Momentum Acceptance

• Linear optics

- Analysis of orbit response matrix, e.g. LOCO program
 - β-beating correction
 - β-coupling correction
- Non-linear optics
 - Resonance driving term correction
 - Frequency map analysis
 - Genetic algorithms

• Linear optics correction at SPring-8 based on analysis of orbit respose matrix

Touschek Lifetime of SPring-8 II

- Momentum acceptance w/ Sx alignment error (σ = 10 μm, 2 σ cut)
- Touschek lifetime w/ intra-beam scattering
- Stable Top-up operation needs lifetime over 0.5 hour.
- Bunch lengthening by higher harmonic cavity or/and coupling increase: essential for practical operation.

Outline

- Introduction
- Intra-beam scattering
- Touschek lifetime
- Fast ion instability
- Microwave instability

Ion Trapping

- Ion generated by beam-gas ionization trapped by electron beam.
- Trapped ion causes instabilities, vertical emittance blow-up.
- To avoid ion trapping, light source rings use a long bunch train filling pattern followed by a long gap.

- Ion clearing gap can't exclude ion from accumulating during one passage of single bunch train.
- Those ions can still cause Fast Ion Instability (FII).

by Raubenheimer and Zimmermann

- Under bad vacuum condition FII is observed in many light sources: ALS, PLS, SOLEIL, SSRF, ...
- At SP-8, after reconstruction of ¼ of ring to introduce 30m long magnet-free straight sections, FII occurred Sep-2000, and disappeared

as vacuum improving.

2013-May-17

Observation of FII at SP-8

- Experimental condition:
 - 820 buckets (1/3 of ring) filled with 1-st bunch train.
 - 2-nd train of 160 buckets stored with gap 20ns, 36ns, 120ns.
- Results:
 - Bunch oscillation in 1-st train rises at ~500 bucket.
 - No bunch oscillation in 2-nd train with 120ns gap.

Multi bunch filling pattern of SP-8: 160 bunch train x 12

SPring. 8 2013-May-17

IPAC'13

FII at USR

• Small beam sizes enhance the growth rate of FII. Growth rate of FII

$$\frac{1}{\tau} = \frac{cr_e\beta_y N_b n_b}{2} \frac{W}{\gamma}$$

2013-May-17

SPring.8

 N_b : # of electron per bunch, n_b : # of bunches

W: Coupling force between electron bunch and ions

$$W = \frac{8\sigma_i P}{3\sqrt{3}kT} \left(\frac{r_p}{A}\right)^{1/2} \frac{\left(N_b s_b\right)^{1/2} n_b}{\sigma_y^{3/2} \left(\sigma_y + \sigma_x\right)^{3/2}}$$

 σ_i : ionization cross section, r_p : proton classical radius,

A : mass number of ion, s_b : bunch spacing

Coupling force of SP-8 II is several tens or more larger than SP-8, so FII may occur at nominal pressure.

Outline

- Introduction
- Intra-beam scattering
- Touschek lifetime
- Fast ion instability
- Microwave instability

 Microwave (single bunch longitudinal) instability causes anomalous energy spread blow-up and bunch lengthening above threshold current.

• Threshold current of MWI (Boussard criterion) $I_{th} \leq \frac{2\pi\alpha E\sigma_p^2 \sigma_\ell}{e|Z(n)/n|L}$

 α : momentum compaction, σ_p : energy spread, σ_ℓ : bunch length Z(n): broad band impedance, L : circumference

	α	σ_{p}	σ_{I}	l _{th}
SPring-8 (6 GeV)	1.67 x 10 -4	0.082	10 ps	2 mA
SPring-8 II	1.55 x 10 ⁻⁵	0.096	5.5 ps	~ 0.14 mA

c.f. 300 mA / 2436 = 0.12 mA

Small momentum compaction lowers threshold current of MWI, which becomes important for USR.

- Higher harmonic cavity is necessary for USR to reduce IBS and Touschek effects.
- Coupling control is also important for USR.
- Momentum acceptance should be extended as large as possible by optimization of non-linear dynamics.
- Microwave instability and Fast ion instability may occur at nominal condition of USR.