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Abstract
The proton linac of the European Spallation Source will

operate at unprecedented beam power of 5 MW. Such
power requires a precise modeling of the beam dynamics
in order to protect its components from losses. The high
peak current of 62.5 mA produces a space charge force that
dominates the dynamics at low energy, while the high gra-
dient required to accelerate up to 2 GeV in the 500 m of
linac length is challenging for the dynamics in the RF cav-
ities. This paper presents modelings of the space charge
force and RF cavities used in the ESS Linac Simulator. The
simulator is under development as part of the XAL on-line
model, and it will be adopted for the ESS linac operations.

INTRODUCTION
To reach the 5 MW beam power required by the ESS

linac there are two key non-linear components that have to
be designed carefully: the space charge and the radio fre-
quency cavities. The space charge dominates the dynamics
of the proton beam at low energies: in the Drift Tube Linac
the force of the space charge competes with the strength of
the quadrupoles and in some cases can reach 80% of the
force of the magnets [1]. Such a dominant force cannot
be treated with the linear approximation but must be eval-
uated with a numerical integrator that calculates the field
with high accuracy. Moreover, the usual approximation for
long bunches, where the traversal σ is much smaller than
the longitudinal σ is not valid for ESS. The emittances of
ESS are almost the same in the three planes as reported in
Table 1 of the beam parameters.

In this paper the model for a Gaussian distribution is pre-
sented. Such a model was selected, because it represents
well the beam without affecting too much the performances
of the simulator. A Particle In Cell (PIC) model is under

Table 1: Beam Parameters

Parameter Value

Power on Target 5 MW
Peak Power 125 MW
Top Energy 2 GeV
Beam Peak Current 62.5 mA
Particles per bunch 1.1× 109

Duty Cycle 4%
Freq. before the Medium β sect. 352.21 MHz
Freq. after the Medium β sect. 704.42 MHz
Hor. & Ver. Normalized Emit. 0.25× 10−6 m rad
Longitudinal Normalized Emit. 0.33× 10−6 m rad
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consideration for a more advanced description of the space
charge in the ELS code.

The second key component is the RF cavity model: those
elements will push the beam with a peak surface field of
45 MV/m. This gradient influences the longitudinal dy-
namics producing a strong non-linear behavior. In order to
maximize the longitudinal acceptance of the beam it is im-
portant to evaluate the strength that each particle feels with
a model of the cavity based on a field map.

In this paper the field map along the z axis is generated
from the first and third harmonics of the field.

SPACE CHARGE MODEL
The space charge is the electromagnetic force that a par-

ticle experiences when it is in a bunch of particles with the
same charge. In the rest frame, the space charge depends
on the beam intensity (number of particles), and the relative
position of the particles (what is in general called the beam
distribution or the geometry of the bunch). The factor that
depends by the current is given by the product of the ele-
mentary charge e and the number of particles in the bunch
N . This factor can be scaled according to the constant 1

4πε0
from the force of Coulomb. The space charge potential is:

Usc =
eN

4πε0
G (1)

This is in general converted in parameters more familiar for
the accelerator such as:

Usc =
R0mpc

2

e2
I

f
G (2)

with R0 = e2

4πε0mpc2
is the classical radius of the proton

and the number of particles N = I
ef is expressed as the

ratio between the beam current and the frequency of the
RF multiplied by the elementary charge. In the lab-frame,
the magnetic field contributes to the potential reducing it
with a Lorentz factor γ2:

Usc =
R0mpc

2

e2γ2
I

f
G (3)

The geometrical factor G depends on the assumptions used
to model the bunch shape. In literature there are three main
ways to evaluate G:

• the bunch is assumed as an ellipsoid that contains all
the charge uniformly distributed [2];

• the bunch is assumed as a Gaussian distribution in the
three spatial coordinates;
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• the distance between particles is evaluated using a
mesh of the space and computing the charge of the
particles in a grid (the so-called Particle In Cell);

the ELS uses the Gaussian option, and consequently the
geometrical factor is expressed as

G =
1√
π

∫ ∞
0

e
− x2

2σ2x+t
− y2

2σ2y+t
− z2

2σ2z+t − 1√
(2σ2

x + t)(2σ2
y + t)(2σ2

z + t)
dt. (4)

The factor 1√
π

normalizes the distribution to 1. Integration
in the spatial coordinates is done by introducing the dummy
variable t. The resulting potential is:

Usc =
IR0mpc

2

fe2
√
πγ2

∫ ∞
0

e
− x2

2σ2x+t
− y2

2σ2y+t
− z2

2σ2z+t − 1√
(2σ2

x + t)(2σ2
y + t)(2σ2

z + t)
dt

(5)
The kick to apply arise from the force:

F = −e∇Usc (6)

γmpa = −IR0mpc
2

feγ2
∇G (7)

a = −IR0c
2

feγ3
∇G (8)

The kick is the acceleration divided by the modulus of the
momentum:

∆x′ = −αx
∫ ∞
0

e
− x2

2σ2x+t
− y2

2σ2y+t
− z2

2σ2z+t√
(2σ2

x + t)3(2σ2
y + t)(2σ2

z + t)
dt

(9)

∆y′ = −αy
∫ ∞
0

e
− x2

2σ2x+t
− y2

2σ2y+t
− z2

2σ2z+t√
(2σ2

x + t)(2σ2
y + t)3(2σ2

z + t)
dt

(10)

∆z′ = −αz
∫ ∞
0

e
− x2

2σ2x+t
− y2

2σ2y+t
− z2

2σ2z+t√
(2σ2

x + t)(2σ2
y + t)(2σ2

z + t)3
dt,

(11)
with α = IR0

fe
√
πβ2γ3 . It is important to recall that the kick

is evaluated in the frame of the bunch, this means that the z
position is the position that the particles have in the bunch
frame and not in the laboratory frame. For the x and y
coordinates the transformation of coordinates between the
laboratory and the bunch is trivial.

The integral cannot be evaluated analytically so it is
calculated using an adaptive algorithm for the Gaussian
quadrature as implemented in the GNU Scientific Li-
braries [3–5]. An example of the field calculated with this
algorithm is shown in Fig. 1: this is a section of the beam
that shows the distribution of the space charge force. The
maximum of the force is normalized to 1.

This model of the space charge is already implemented
in the ELS and it was benchmarked against the TraceWin
simulator. The results are presented in this conference in
the paper [6].

Figure 1: Force due to the space charge represented in a
section of the bunch.

CAVITY MODEL
The ELS is using the kick-drift-kick cavity model at the

time being. Such a model requires pre-calculated transit
time factors, TTF, as one of the parameters. For the multi-
cell cavities the phase of the cavity is also pre-calculated
based on the distance between the gaps and particle energy.
For the case of a linac at its nominal settings, these val-
ues are exact and the results are in good agreement with
the integration of fields [6]. However, when the particle
energy differs significantly from that of the synchronous
particle the energy gain and phase advances are systemat-
ically wrong. To avoid this problem, a new cavity model
was developed which using few parameters regenerates the
original field [7].

The field is divided in three main regions: the input cell,
the inner cells and the output cell. The input and output
cells are each divided into two sections, the inner-side si-
nusoidal field and the outer-side exponential decay field as
shown in Fig. 2. To include the field asymmetry due to
power coupler, High Order Modes (HOM) coupler or dif-
ferent beam tube apertures, the input and output cells are
treated independently.

I II III IV V
Fit

Field

Figure 2: Simulated field, matched field and the sections
of the matched field. The input/output exponential decay
(I/V), input/output sinusoidal (II/IV), and inner cells (III).
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The inner cells are modeled as the sum of first and third
harmonic oscillations; the inner-side end-cells are modeled
using the same method, but with a different wave number
and amplitude, while the exponential decay cells are mod-
eled with a exponential function which takes a Gaussian
form when the power of the exponent is exactly 2.

The matching for the sinusoidal cells is done using a
Fourier transform, and the matching parameters for the ex-
ponential decay cells are based on analytic calculations. To
regenerate the field, 15 parameters are requires: geometric
β of the cavity (βg), number of cells, frequency (frf ), am-
plitude of the first and third harmonic for the inner cells,
input cells, and output cells, the gap shift for the input and
output cells, and exponent power and σ of the input and
output cells. Then to use this field in the simulations one
must add the synchronous phase and amplitude to the pa-
rameters. Another parameter which could be useful, es-
pecially for the online modeling, is the TTF for the syn-
chronous particle.

The field in the five regions could be generated by the
following equation in regions I and V (considering the dif-
ferent parameters).

F (z) = Aexp · e
−
(
|z−Lexp|

2σexp

)pexp
, (12)

whereAexp is the coefficient of the exponential, Lexp is the
position of transition from region I to II (IV to V) for the
input (output) cells, σexp represents the width of the decay
field, and pexp is the power of the exponential. Both σ and
p could be found analytically. The governing equation for
regions II and IV is:

F (z) = B1 · cos

(
2π
z − φ1
L′

)
+B3 · CS

(
6π
z − φ3
L′

)
,

(13)
where the functionCS(x) is a sine for even number of cells
and a cosine for odd number of cells, B1 and B3 are the
coefficients for the first and third harmonic, φ1 and φ3 are
phases to make the function continues at the transition be-
tween region II and III (III and IV) for the input (output)
cells, and L′ is the adjusted cell length for the end cells
taking into account the gap shift. The field in the inner
cells is generated using:

F (z) = A1 · cos
(

2π
z

L

)
+A3 · cos

(
2π

3z

L

)
, (14)

where A1 and A3 are the coefficients of the first and third
harmonic for the inner cells, and L is the period length
equal to βgλ (λ = c/frf ).

One way to measure the accuracy of the fitted field to the
original is to look the fitting parameters such as χ2 or R2.
It is also possible to look at the TTF calculated using the
fitted field with the TTF of the original field and compare
the χ2 or R2. For the example presented here the R2 is
0.999 for both the field and the TTF. The curves do overlap
in the functional area of the cavity, i. e. from a beta of 0.65
onward as shown in Fig. 3.
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Figure 3: TTF calculated for a range of βs using the field
from RF simulations and the fitted field.

Further Development
The new cavity model will be implemented to the ELS

in near future and the results will be benchmarked against
the kick-drift-kick model. The transverse field generation
must further developed from the current Bessel expansion
around the beam axis. The model at its current state could
not generate fields with complete asymmetry in each sin-
gle cell which is the case for some cavities, e. g. Spoke
cavities.

CONCLUSION
The space charge model for a 3D Gaussian beam

was here presented. This model is benchmarked against
TraceWin in [6] showing that the dynamics predicted is in
good agreement with a well known simulator.

The RF model here proposed is capable to generate the
field map of a multy-gap cavity based on 15 parameters
with a very small difference with respect to the classic field
map. This new model for the cavities is under implementa-
tion in the ESS Linac Simulator and will be included in the
next version.

REFERENCES
[1] M. Eshraqi and J.-M. Lagniel, “On the Choice of Linac Pa-

rameters for Minimal Beam Losses,” Proceedings of IPAC
2013, Shanghai, China, May 2013.

[2] P. M. Lapostolle, “Effets de la charge d’espace dans un
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