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Abstract
Investigation of spin-orbit motion in electromagnetic

fields requires different numerical methods. Approaches

for long-term evolution modelling need both performance

and symplecticity. In this paper we discuss matrix maps

method for numerical simulation. We examine symplectic-

ity of maps by two ways. First of all, the direct condition of

symplecticity is considered. Second approach is an order-

by-order symplectification of trancated series map. In the

research we examine symplectification and errors in terms

of electostatic storage ring.

INTRODUCTION
The most part of beam physics problems can be de-

scribed using the Hamiltonian presentation. Main prop-

erties of similar systems are in common practice of qual-

itative investigations. But the practical calculations based

only on numerical algorithms do not guarantee in general

the symplecticity property which is inherent to all Hamil-

tonian systems. Failing of this property can produce losing

of real effects and to acquisition of false effects. That is

why all commonly used numerical methods should have

the symplecticity property. In that case the simulation pro-

cess will guarantee adequate and accurate results. The suc-

cessful results have been achieved in computer modeling of

long beam evolution using the Lie algebraic methods. Ac-

cording to this approach a simulator constructs high-order

maps and use them for the design, optimization and oper-

ation of beamlines. However the practical realization of

this powerful approach does not guarantee the symplectic-

ity property automatically. Indeed the realization of Lie

methods usually uses truncated series in different forms.

As it is known these truncated series have not properties

intrinsical to the starting map. There are some works (see,

e.g. [1–3]) where some symplectification algorithms are

described. These algorithms have numerical character and

so have all imperfections residing to all numerical methods

and algorithms.

In the report [4] an approach for step-by-step symplec-

tification for the Lie algebraic methods are suggested. In

contrast to usual numerical approaches the way uses matrix

formalism for the Lie algebraic tools in symbolic mode. In

this research we use numerical implementation of matrix

formalism. This allows us to create very simple correc-

tion via classical optimization procedure, which guarantee

the symplecticity properties in all orders up to some hand-

picked approximation order.
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In the article we will consider the given approach ap-

plied to the investigation of spin-orbital motion in an elec-

trostatic storage ring. Particle dynamics is considered in

8-dimensional space. A state of dynamic system is de-

scribed as (x, x′, y, y′, Sx, Sy, δE, t) vector, where x, x′

and y, y′ are transverse and vertical displacement and ve-

locity respectively; Sx, Sy are components of spin vector,

t is time variable. Description of orbital motion is based

on Newton-Lorentz equation. Spin dynamics is described

by BMT-equation. Despite the fact that the symplectic

condition are also can be applied for spin map (means

skew-symmetric matrix), we will focus on orbital part of

maps. The spin normalistaion is controlled by replacing

Ss =
√
1− S2

x − S2
y in BMT-equation.

MATRIX MAP
Let’s introduce a nonlinear system of ordinary differen-

tial equations
d

dt
X = F (t,X). (1)

Under the assumptions of F (0, X0) = 0 the system (1) can

be presented in the following form

d

dt
X =

∞∑
k=0

P 1k(t)X [k], (2)

where X [k] is kronecker power of vector X , matrices P 1k

can be calculate as

P 1k(t) =
1

(k)!

∂kF (t,X0)

∂(X [k])T
, k = 1, 2, . . .

Note that vector X is equal to (xk1
1 , . . . , xkn

n ), where xi

means ith component of state, (k)! = k1! . . . kn!
Solution of system (2) can be written in form

X =
∞∑
k=0

R1k(t)X
[k]
0 . (3)

Elements of matrices R1k are depended on t and can be

calculated in symbolic mode. But such algorithm are quite

complex. In this paper we use a numerical implementaton

of it. In this case matrices R1k are evaluate in the specific

time. After differentiating the equation (3) and taking into

account (2) we get

dX

dt
=

∞∑
k=0

dR1k(t)

dt
X

[k]
0 ,

∞∑
k=1

dR1k(t)

dt
X

[k]
0 =

∞∑
k=1

P 1k(t)X [k].
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The partial derivatives of this equations with respect to

X
[j]
0 are equal to

dR10(t)

dt
=

∞∑
k=1

P 1k(t)(R1k)[k],

dR1j(t)

dt
=

∞∑
k=1

P 1k(t)
∂X [k]

∂(X
[j]
0 )T

, k = 1, 2, . . .

(4)

and define the system of ordinary differential equations.

Solution of this system is deterined by matrices R1k. Equa-

tions (4) describes the solution of an ODE in general form.

Commonly in beam dynamics the motion is described in

deviations from reference orbit. In this case map R10 is

equal to zero.

For integration of equations (4) numerical approach can

be used. Note that step-by-step integration method is used

only for map building. After that the solution can be calcu-

late with the map (3).

SYMPLECTICITY
The relation (3) can be presented as map transformation

X = R ◦X0. (5)

This map R is symplectic if

M∗JM = J, ∀X0, (6)

where M = ∂X/∂X0 and M∗ is the transponse of M , E
is identity matrix,

J =

(
0 E
−E 0

)
. (7)

As we say above the system of equations (4) can be

solved by various numerical methods. After the map is cal-

culated it is possible to compute an error of symplecticity

violation directly following the equation (6). The table 1

shows an error analysis for a set of numerical methods and

steps of integration, that was used for map computing. The

error is calculated as a norm of matrix ‖M∗JM − J‖.

Table 1: Symplecticity violation

Method/step h = 0.2L h = 0.1L h = 0.01L

Euler method 0.2233 0.1065 0.0104

Runge–Kutta 4th 0.0717 0.0205 0.0119

Symplectic 0.0021 0.0004 0.0004

Runge–Kutta 4th

In the table 1 L means length of an element of lattice, h is

integration step. In the research we use symplectic 2 stage

Runge-Kutta scheme of 4 order [5] that can be described

by the scheme (see Table 2).

Table 2: 2-stage 4-order implicit Runge-Kutta scheme

b1 + c̃1 b1/2 b1/2 + c̃1
b1 − c̃1 b1/2− c̃1 b1/2

b1 = 1/2, 2b1c̃1
2 = 1/12

On the other hand, the relation (6) in case of numerical

matrices R1k leads to a system of equations

A0 +A1X0
[1] + ·+AkX0

[k] = 0,

where Ai is a numerical vector. Note that this equation

must be satisfied for any X0. It means that the coefficients

of each polynom are equal to zero and in this way appro-

priate corrections of the elements of the matrices R1k can

be found. So one can calculate the relations between ma-

trix elemnts and correct them according to it. We have de-

veloped a simple tool (see Fig. 1) that allows us to obtain

necessary equations. When the equations are quite difficult

to solve the standart optimisation procedures can be run.

Figure 1: Symplectic condition generation.

One can build a numerical map with the given error (see

Table. 1) and order of non-linearity. The difficulties can

arise in map concatenation. Obviously, the concatenation

of two maps of order k produces map of order k2. As we

expect the same order k of the output map, we neglect of

the high-order terms in the map. This immediately leads to

symplecticity violation.

The aim of order-by-order symplectification is introduce

small correction on the map elements to restore the sym-

plectic property. The given problem has a particular impor-

tance in case of reference and design orbits displacement.

In particle dynamics it can arrise in fringe fields modelling.

The next session is described the result of fringe field mod-

elling in electrostatic storage ring.
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Figure 2: Fringe field modelling (left picture – transverse plane x-x’, right picture – spin rotation)

FRINGE FIELDS MODELING

The fringe fields in general case introduces the shift of

reference orbit with respect to the design orbit. In map

representation of the solution it means that the zero-order

part R10 is not equal to zero. This entails difficulties with

reference orbit investigation.

In the research fringe fields in deflectors have been ex-

amined. To achieve the same rotation angle the field in

deflector was modified. By a numerical methods of op-

timization one can find the voltage in a tip of deflector for

predefind fringe field configuration and rotation angle. This

can provide map ‖R10‖ < 10−9, so we can neglect this

term of map. The small errors that are introduced by this

neglection can be corrected by order-by-order symplectifi-

cation.

As shown on Fig. 2 fringe fields have unessential effects

both on orbiatl motion and spin dynamics. The same be-

havior is observed in simulation via COSY Infinity code.

CONCLUSION
In the research two methods for obtaining a symplec-

tic map have been discussed. First one is building map

using a numerical step-by-step integration method. This

approach allows to estimate map terms up to the necessary

order of non-linearity and on a predetermined level of accu-

racy. The second one is order-by-order symplectification,

that provides conditions on map elements which ensure the

symplectic condition.

The given technique was tested on spin-orbit prticles

motion simulation in an electrostatic storage ring. Fringe

fields modeling requires both accuracy in map building and

additional procedure of symplectification. The results are

coincide with other numerical simulation tools [6].
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