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Abstract
To devise control strategies and to analyze the stability

of systems with feedback, a set of few ordinary differen-
tial equations (ODEs) describing the underlying dynamics
is required. It is deduced by combining two approaches not
used in that context before:
(I) Numerical Fourier-Hermite solutions of the Vlasov
equation have been studied for over fifty years [1, 2]. The
idea to expand the distribution function in Fourier series in
space and Hermite functions in velocity is transferred to the
dynamics of bunched beams in hadron synchrotrons in this
contribution. The Hermite basis is a natural choice for plas-
mas with Maxwellian velocity profile as well as for particle
beams with Gaussian momentum spread. The Fourier basis
used for spatially nearly uniform plasmas has to be adapted
to bunched beams where the beam profile is not uniform in
phase. (II) This is achieved analogously to the deduction of
the three term recursion relations to construct orthogonal
polynomials, but applied to Fourier series with the weight
function taken from the Hamiltonian. The resulting system
of ODEs for the expansion coefficients of desired order -
dependent on the number of functions retained - is roughly
checked against macro particle tracking simulations.

BASICS

Longitudinal Bunched Beam Dynamics
A short summary of longitudinal beam dynamics in

hadron synchrotrons is given to set up a common notation
and to introduce the assumptions made. For a more detailed
discussion see e.g. [3]. Coupled bunch oscillations are not
considered. All derivation are done on the case below tran-
sition but should be equivalent above transition.

The dynamics of a single particle m ∈ {1, 2, . . . , M}
with relative phase ϕm (reference ΦR) and scaled energy
deviation Em are described by the Tracking equations

dϕm

dt = a Em (1a)
dEm

dt = b u(ϕm +ΦR)− b u(ΦR) (1b)

with a :=
hω2

RηR

β2

R
γRm0c2

< 0, b := QÛ
2π and u(θ) := sin(θ) for

a single harmonic gap voltage. The synchrotron frequency
is ωsyn =

√−ab cosΦR, the index R refers to the syn-
chronous reference particle, h is the rf harmonic number,
ω the angular revolution frequency, η < 0 the phase slip
factor, β the speed of a particle over the speed of light c,
γ is the ratio between the total energy of a particle and its
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rest mass m0, Q the charge of a particle and Û the ampli-
tude of the rf voltage. Due to space restrictions and to keep
the formulas succinct only the stationary case ΦR = 0 is
considered in the following.

As the number of particlesM is usually large the system
can be approximated by a continuous distribution function
f(ϕ,E, t). If longitudinal and transverse oscillations are
decoupled the system (1) of 2M ODEs can be replaced by
one partial differential equation (PDE), the Vlasov equa-
tion, describing the evolution of f in phase space

df
dt = ∂f

∂t
+ ϕ̇ ∂f

∂ϕ
+ Ė ∂f

∂E

= ∂f
∂t

− ∂H
∂E

∂f
∂ϕ

+ ∂H
∂ϕ

∂f
∂E

= 0 (2)

where the Hamiltonian is given by

H(ϕ,E) = − 1
2a E

2 + b (1− cosϕ) (3)

with −∂H
∂E

= ϕ̇ = a E and ∂H
∂ϕ

= Ė = b sinϕ.
The stationary distribution is a function of the Hamil-

tonian; for an adiabatically captured beam with an initial
Gaussian momentum spread with variance 1

−va
it follows

f(H) ∝ e−vH (4)

with v depending on the bunch size.

Three-Term Recurrence Relation

For any given positive weight function w := w(x) ∈
L1(c, d) there exists a unique set of monic orthogonal
polynomials, that - apart from normalization which is
omitted to enhance readability - can be constructed as
follows [4]:

p0 = 1, p1 = x− α1 with α1 =
d∫

c

wx dx/
d∫

c

w dx and

pn+1 = (x− αn+1)pn − βn+1pn−1 (5)

with αn+1 =
d∫

c

wxp2ndx/
d∫

c

wp2ndx

and βn+1 =
d∫

c

wxpnpn−1dx/
d∫

c

wp2n−1dx for n ≥ 1.

FOURIER-HERMITE EXPANSION

Scaled Hermite functions were used by Schumer and
Holloway [5, 6] to improve the convergence when dealing
with filamentation.
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Series Expansion of the Distribution Function
The Vlasov Equation (2) can be rewritten in form of

a countable systems of ordinary differential equations [7]
- which can than be approximated by Galerkin’s method -
by means of a double series expansion of the distribution
function

f(ϕ,E, t) =
∑

k

∑

l

fkl(t) Φk(ϕ)Ψl(E) (6)

fkl(t) =
∞∫

−∞

π∫

−π

f(ϕ,E, t) Φk(ϕ)Ψl(E) dϕ dE (7)

=
∞∫

−∞

π∫

−π

∑

m

δ(ϕ− ϕm(t))δ(E − Em(t)) . . .

. . .Φk(ϕ)Ψl(E) dϕ dE

=
∑

m

Φk(ϕm(t))Ψl(Em(t)) (8)

where Φk, Ψl denote the weight and Φk, Ψl the basis func-
tions. For high accuracy of low order models the unper-
turbed distribution should be given by Φ0(ϕ)Ψ0(E) such
that fkl(t) ≡ 1 for k = l = 0 and zeros elsewise.

Hermite Polynomials - In Energy
The probabilists’ and the physicists’ Hermite polynomi-

als follow from the three-term recurrence relation (5) on the

interval (−∞,∞) with the weight functions w(x) = e−
x2

2

and w(x) = e−x2

respectively. To match the expan-
sion with the momentum spread scaled Hermite func-
tions based on w(E) = e−ṽE2

are used where ṽ := −av
2 .

The polynomials are then given by p0 = 1, p1 = E,
pl+1 = Epl − l

2ṽ pl−1 with the derivative dpl

dE = lpl−1.

Fourier Polynomials - In Phase
The idea the tree-term recursion relations are based on

can also be applied to Fourier series with w(ϕ) ∝ e−ṽ cosϕ

taken from the Hamiltonian (3) or rather the station-
ary distribution (4) and ṽ := bv. The recurrence re-
lations to provide orthogonality fall into two parts -
in the following called cosine and sine type - each
with tree terms again. From c0 = 1, c1 = cosϕ− α̂1,
ck+1 = cosϕck − α̂k+1ck − β̂k+1ck−1 for the cosine type
polynomials it follows

sinϕ ck = μ̂ksk−1 + ν̂ksk + sk+1 (9a)
dck
dϕ = κ̂ksk−1 − ksk (9b)

whereas for the sine type polynomials s0 = 0, s1 = sinϕ,
sk+1 = cosϕ sk − α̃k+1sk − β̃k+1sk−1 gives

sinϕ sk = μ̃kck−1 + ν̃kck − ck+1 (10a)
dsk
dϕ = κ̃kck−1 + kck (10b)

The bunch size dependent constants in the Equations (9)
and (10) are dominated by modified Bessel function of the
first kind and are plotted in Figure 1 as they account for the
final model given in (11).

Figure 1: Recurrence coefficients μ̃k, μ̂k, ν̃k, ν̂k, κ̃k and
κ̂k appearing in (9) and (10) over v introduced in (4) and
associated with the bunch size. The line styles refer to the
indices k as follows: 0 - , 1 - , 2 - , 3 - , 4 - .

Basis and Weight Functions
An asymmetrically weighted representation is chosen

such that the states fk0 are linear combinations of the mea-
sured Fourier coefficients of the beam current which is im-
portant for the applicability including the interaction with
surrounding impedances. For simulation purposes sym-
metrically weighted ordinary Fourier-Hermite expansions
may be preferable as the square integral of the distribution
function was a constant of the motion. Conservation of this
square integral provides numerical stability [5] which the
physical energy does not as (the numerical approximation
of) the distribution function is not necessarily positive [6].

Barring normalization the orthogonal weight
and basis functions can now be defined as
Ψl(E) = pl(E), Φ2k(ϕ) = ck(ϕ), Φ2k−1(ϕ) = sk(ϕ),

Ψl(E) = pl(E) eav
E2

2 , Φ2k(ϕ) = ck(ϕ) e
−bv(1−cosϕ)

and Φ2k−1(ϕ) = sk(ϕ) e
−bv(1−cosϕ). The calculation of

the recurrence relations including the derivatives of these
functions is straight forward.

Limits for Short and Long Bunches
The limits for infinite long bunches (v = 0) with

w(ϕ) = 1
2π are the terms of an usual Fourier series

ck(ϕ) = 21−k cos(kϕ) and sk(ϕ) = 21−k sin(kϕ).

The size dependent constants become μ̃1 = 1
2 , μ̃k = 1

4 for
k ≥ 2, ν̃k = 0, κ̃k = 0, μ̂k = − 1

4 , ν̂k = 0 and κ̂k = 0.
For infinitesimal short bunches (v → ∞) with

w(ϕ) = δ(ϕ) the polynomials converge to

ck = (cosϕ− 1)k and sk = (cosϕ− 1)k−1 sinϕ.

In this case μ̃k = 0, ν̃k = −2, κ̃k = 2k−1, μ̂k = 0, ν̂k = 0
and κ̂k = 0. Apart from normalization pl approaches El

like in a moment approach.

System of ODEs
The requested set of ODEs can be accomplished

(a) taking the derivative of the states fkl(t) given in (7)
but replacing the function f(ϕ,E, t) by the sum over all
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ṡkl = lb
(
μ̃kc(k−1)(l−1) + ν̃kck(l−1) − c(k+1)(l−1)

)
+ a

[
κ̃k

(
c(k−1)(l+1) +

l

−2av
c(k−1)(l−1)

)
+ k

(
ck(l+1) +

l

−2av
ck(l−1)

)]
(11a)

ċkl = lb
(
μ̂ks(k−1)(l−1) + ν̂ksk(l−1) + s(k+1)(l−1)

)
+ a

[
κ̂k

(
s(k−1)(l+1) +

l

−2av
s(k−1)(l−1)

)
− k

(
sk(l+1) +

l

−2av
sk(l−1)

)]
(11b)

particles represented by Dirac deltas resulting in a summa-
tion of the weight functions as shown in (8) thus allowing
to use the tracking equations when taking the derivative or
(b) by inserting the expansion of the distribution func-
tion (6) into the Vlasov Equation (2), multiplication with
the weight functions followed by integration using the or-
thonormality.

The result - equations of motion for the Fourier com-
ponents of the beam current - is obviously the same, a
countable set of linear ODEs. With the states defined as
f (2k)l = ckl and f (2k−1)l = skl the system describing the
dynamics of the expansion coefficients is given in (11) on
the top of the page.

A finite dimensional system follows when closing the set
of coupled ODEs by fkl(t) ≡ 0 for k + l > n. The order
of the system is 4 · n! where n states have been eliminated
due to conserved quantities. Other truncation schemes are
also conceivable to cope with selected constants of motion
to be reproduced by the model.

The system separates into two independent subsystems
of equal size for the phases and amplitudes of the Fourier
decomposition of the beam current or odd and even sin-
gle bunch oscillation modes respectively. Its eigenvalues
are mere imaginary with zero real part. For a single par-
ticle (v → ∞) the frequencies are integer multiples of the
synchrotron frequency. Nevertheless filamentation due to
the synchrotron frequency spread is reproduced within a
certain time range as energy can dissipate into higher fre-
quencies for a while. Due to the finite order approximation
of the infinite dimensional dynamics this transfer is limited
as shown in Figure 2 by means of different approximation
orders.

NUMERICAL EVALUATION

The dynamical system is compared to tracking simula-
tions (cf. (1)) performed with M = 104 macro particles.
With less particles, the low accuracy of the tracking simu-
lations dominates the result of the comparison. For longer
bunches even more macro particles are necessary. How-
ever the error in the presented model increases faster as
well due to the larger frequency spread. No quantitative
analysis is done as the objective of this work is a low or-
der approximate description of bunched beam dynamics to
obtain analytical as opposed to numerical results.

Figure 2 shows the phase of the first harmonic of the
beam current for a dipole mode oscillation of a short bunch
over the number of synchrotron periods N = t

ωsyn

2π . The
first approximation (n = 1) is similar to the usually used
harmonic oscillator but the frequency adapts to the bunch
size as

√
κ̃1ωsyn. The phase space density reproduced by

the last approximation (n = 5) is shown in Figure 3, where
the synchrotron frequency spread shows up quite clearly,

especially in the plots on the right where the stationary dis-
tribution was subtracted.

Figure 2: Phase of the first harmonic for different trun-
cation orders n: harmonic oscillator - , presented
model - , tracking simulations - .

Figure 3: Approximation of the density distribution in
phase space corresponding to the last plot in Figure 2.

OUTLOOK
Meanwhile a control input has been added to the homo-

geneous ODEs presented here resulting in a bilinear sys-
tem. Thus the influence of beam loading compensation
on longitudinal closed loop feedback algorithms has been
shown.

Coupled bunch modes can possibly be included by
Fourier analysis with respect to the revolution harmonic in-
stead of the rf harmonic. Further analysis may follow.
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