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Abstract
This work presents a new model independent adaptive

scheme for optimization and tuning of particle accelerator

components, with a simulation demonstrating the method

on a low energy, space-charge dominated beam. The

scheme presented here does not depend on an accurate

model of the system it is stabilizing, and may even be un-

aware of its control input direction (such as having rotated

quadrupole magnets and alignment errors) and this direc-

tion may change with time (thermal cycling/hysteresis).

Stability properties are demonstrated both analytically and

through a simulation in which the current settings of twenty

two quadrupole magnets are simultaneously tuned through

the transport section of the Los Alamos Linear Proton Ac-

celerator. The controller is unaware of the complex nonlin-

ear beam dynamics, with its only input being the surviving

beam current readings along the transport region. Starting

with all magnet settings at zero, in which case all of the

beam is lost by the end of the transport, the feedback con-

trol tunes the magnets resulting in successful transport to

the first drift tube linac section.

INTRODUCTION
In this work, we present a simple, model-independent

tuning technique, which may be implemented in hardware

to automatically fine tune multiple particle accelerator pa-

rameters simultaneously. The user first defines a cost func-

tion, C, to be minimized, which may be measured, but

whose analytic form is unknown, such as the total particle

loss along the length of a particle accelerator. The compo-

nents pi, of the vector p = (p1, . . . , pm) are parameters by

which the cost may be influenced, such as the power source

current settings feeding the quadrupole magnets in the ac-

celerator lattice. The iterative tuning law is then given by:

pi(n+ 1) = pi(n) + Δ
√
αωi cos (ωiΔn+ kC(p(n))) .

(1)

Initial settings p(1), may be chosen as usual, based on a

physics model. The initial cost, C(p(1)), is calculated after

the first run and new parameter values p(2) are set accord-

ing to (1). Constraints are easy to implement by defining

upper and lower bounds for each parameter and implement-

ing:

IF pi(n+ 1) > pi,max, THEN pi(n+ 1) = pi,max,

IF pi(n+ 1) < pi,min, THEN pi(n+ 1) = pi,min.

Because this method is model independent, it may be
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useful in helping mitigate un-modeled disturbances and

component imperfections.

TUNING METHOD
Physical Motivation

To give a simple 2D overview of this method, we

consider finding the minimum of a measurable function

C(x, y), for which we cannot simply implement a gradi-

ent descent for the trajectory of (x(t), y(t)), because we

are unaware of its analytic form. We propose the following

adaptive scheme:

∂x

∂t
=

√
αω cos (ωt+ kC(x, y)) (2)

∂y

∂t
=

√
αω sin (ωt+ kC(x, y)) . (3)

Note that although C(x, y) enters the argument of the adap-

tive scheme, we do not rely on any knowledge of the ana-

lytic form of C(x, y), we simply assume that it’s value is

available for measurement at different locations (x, y).
The velocity vector

v =

(
∂x

∂t
,
∂y

∂t

)
=

√
αω [cos (θ(t)) , sin (θ(t))] , (4)

where

θ(t) = ωt+ kC(x(t), y(t)), (5)

has constant magnitude

‖v‖ =
√
αω, (6)

and therefore the trajectory (x(t), y(t)) moves at a con-

stant speed. However, the rate at which the direction of

the trajectories’ heading changes is a function of ω, k, and

C(x(t), y(t)):

∂θ

∂t
= ω + k

∂C

∂t

= ω + k

(
∂C

∂x

∂x

∂t
+

∂C

∂y

∂y

∂t

)
. (7)

Therefore, when the trajectory is heading in the correct di-

rection, towards a decreasing value of C(x(t), y(t)), the

term k ∂C
∂t is negative, and so the overall turning rate ∂θ

∂t ,

(7) is decreased. When, on the other hand, the trajectory

is heading in the wrong direction, towards an increasing

value of C(x(t), y(t)), the term k ∂C
∂t is positive, and the

turning rate is increased. On average, the system ends up

approaching the minimizing location of C(x(t), y(t)), be-

cause it spends more time moving towards it than away.
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Figure 1: The subfigure shows the rotation rate, ∂θ
∂t = ω +

∂C(x,y)
∂t in red, for the part of the trajectory that is in bold

red, the first 0.5 seconds of simulation. The rotation of the

parameters’ velocity vector v(t) slows down when heading

in the correct direction, towards the minimum of C(x, y) =
x2 + y2, at which time k ∂C

∂t < 0, and speeds up when

heading in the wrong direction, away from the minimum,

when k ∂C
∂t > 0. The system ends up spending more time

heading towards and approaches the minimum of C(x, y).

The ability of this direction-dependent turning rate

scheme is apparent in the simulation of system (2), (3), in

Figure 1. The system, starting at initial location x(0) = 1,

y(0) = −1, is simulated for 5 seconds with update param-

eters ω = 50, k = 5, α = 0.5, and C(x, y) = x2 + y2. We

compare the actual system’s (2), (3) dynamics with those

of a system performing gradient descent:

∂x̄

∂t
≈ −kα

2

∂C(x̄, ȳ)

∂x̄
= −kαx̄ (8)

∂ȳ

∂t
≈ −kα

2

∂C(x̄, ȳ)

∂ȳ
= −kαȳ, (9)

whose behavior our system mimics on average, with the

difference

max
t∈[0,T ]

‖(x(t), y(t))− (x̄(t), ȳ(t))‖ (10)

made arbitrarily small for any value of T , by choosing arbi-

trarily large values of ω. The derivation of this relationship

and of the rate of the gradient descent are based on The-

orem 1 and discussed in more detail in [1]. Towards the

end of the simulation, when the system has approached the

origin, so that C(x, y) ≈ 0, the dynamics of (2), (3) are

approximately

∂x

∂t
≈ √

αω cos (ωt) =⇒ x(t) ≈
√

α

ω
sin (ωt)

∂y

∂t
≈ √

αω sin (ωt) =⇒ y(t) ≈ −
√

α

ω
cos (ωt) ,

which is a circle of radius
√

α
ω , which can be made arbi-

trarily small for a fixed value of α by choosing arbitrarily

large values of ω. Convergence towards a maximum, rather

than a minimum is achieved by replacing k with −k.

For convergence to take place, the perturbing functions

of the different parameters must be independent, in the fre-

quency domain. For a given system, with a cost function

C(p1, . . . , pn, t), if we perturb the parameters according to

(replacing cos(·) with sin(·) below makes no difference):

ṗi =
√
αωi cos (ωit+ kC(p1, . . . , pn, t)) (11)

such that the ωi are distinct, we get the average behavior

˙̄pi = −kα

2

∂C

∂p̄i
. (12)

In practice, the degree to which the ωi are distinct is im-

portant, while ω1 = 50, ω2 = 50.1 is usually a bad choice,

ω1 = 50, ω2 = 77 is much better, the sensitivity is different

for every system/cost function that the method is applied to

and depends on coupling between different components.

SIMULTANEOUSLY TUNING 22
QUADRUPOLE MAGNETS

We perform a simulation of the low energy H+ beam

transport section of the Los Alamos LANSCE accelerator,

with all initial magnet current settings set to 0A, and al-

lowed to tune up based purely on the scheme as described

above, in which the four costs (j=1,2,3,4) being minimized:

Cj = (Ij − 0.013)
2
, (13)

are the square of the difference between initial beam cur-

rent 0.013A and total current making it through various

parts of the transport region, at which diagnostics are avail-

able. With reference to Figure 2, I1 is the surviving beam

current preceding Q7, I2 is I1 added to current measure-

ment following Q14, I3 is I2 added to a measurement in

front of Q15 and I4 is measured following Q22. The mag-

nets were then updated according to:

Qi(n+ 1) = Qi(n) +
√
αωiΔcos (ωiΔn+ kCj(n)) ,

(14)

where different magnets only saw costs which they were

able to influence. Figure 4 shows the evolution of the mag-

net settings, Figure 3 shows the surviving beam current at

the end of the transform throughout the tuning process, and

Figure 5 shows the RMS beam sizes at the end of the tuning

procedure.
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Figure 2: Simplified schematic of the LANSCE H+ injector and transport region.
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Figure 3: The surviving current at the end of the beam

transport over 2500 iteration steps is shown for an initial

beam current of 13mA.
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Figure 4: Evolution of the current settings to the magnets

over 2500 iteration steps.
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Figure 5: RMS beam size at the end of the iterative tuning

scheme.

ANALYTIC BACKGROUND
Our averaging analysis is based on a functional analysis

result of Kurzweil and Jarnik [3], which allows one to relate

the trajectories of a highly oscillatory system to those of a

simplified Lie bracket averaged system.

Theorem 1 [3] For T ∈ [0,∞), and any compact set K ⊂
Rn such that the functions f(x, t), hi(x, t), gi(x, t) are
continuous and continuously differentiable, for any ν, δ >
0, there exists M such that for all k > M , the trajectory
x(t) of the system

ẋ = f(x, t) +
n∑

i=1

hi(x, t)(kki)
ν cos

(
(kki)

2νt
)

−
n∑

i=1

gi(x, t)(kki)
ν sin

(
(kki)

2νt
)
, (15)

and the trajectory x̄(t) of the system

˙̄x = f(x̄, t)− 1

2

n∑
i �=j

[hi(x̄, t),gj(x̄, t)] , x̄(0) = x(0),

(16)

satisfy the convergent trajectories property:

max
t∈[0,T ]

‖x(t)− x̄(t)‖ < δ, (17)

where k ∈ N, ki ∈ R such that k̂i 
= k̂j , and

[hi(x̄, t),gj(x̄, t)] =
∂gj

∂x̄
hi − ∂hi

∂x̄
gj . (18)
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