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Abstract 

The MAX IV storage rings will use third harmonic 
cavities operated passively to lengthen the bunches and 
alleviate collective instabilities. These cavities are an 
essential ingredient in the MAX IV design concept and 
are required for achieving the final design goals in terms 
of stored current, beam emittance and beam lifetime. This 
paper reports on fully self-consistent calculations of the 
longitudinal bunch density distribution in the MAX IV 3 
GeV storage ring, which indicate that up to a factor 5 
increase in RMS bunch length is achievable with a purely 
passive system. 

INTRODUCTION 
The MAX IV facility [1], currently under construction 

in Lund, Sweden, includes a 3 GeV storage ring featuring 
ultra-low emittance (down to 0.2 nmrad) optimized for 
hard X-rays and a 1.5 GeV storage ring optimized for soft 
X-rays and UV radiation production. A 3 GeV linear 
accelerator plays the role of full-energy injector into both 
rings as well as delivers beam to a short pulse facility 
designed to produce spontaneous radiation from 
undulators with pulse lengths down to 100 fs. 

A key ingredient in achieving stable operation of the 
MAX IV rings at high beam current (500 mA nominal 
stored beam current) is the use of a low frequency 
(100 MHz) RF system and third harmonic RF cavities 
which together lead to RMS bunch lengths on the order of 
5-6 cm. The long bunches are essential to achieve the 
ultimate design performance parameters of the MAX IV 
rings. In fact, it is only with lengthened bunches that the 
low emittance can be preserved under the action of intra-
beam scattering and the design intensity can be 
guaranteed against coherent collective effects – in 
particular, the long bunches permit to keep the heat load 
due to induced fields in vacuum chamber components at 
an acceptable level and avoid excitation of high frequency 
trapped (high Q) modes in the chamber structures and RF 
cavity high order modes. Additionally, the long bunches   
allow us to cope with coupled bunch resistive wall 
instabilities [2] that are enhanced by the very compact 
design of the storage ring vacuum chambers [3], which is 
in turn a consequence of the compact magnet design [4] 
required to reach a very low emittance in a relatively 
short machine circumference through the multi-bend 
achromat lattice concept [1]. Moreover, the harmonic 
cavities increase the synchrotron frequency spread within 
the bunches, enhancing Landau damping. 

In this paper, we focus on the 3 GeV ring and describe 
calculations of the equilibrium longitudinal bunch density 

distributions in the double RF system (main and harmonic 
cavities), having in mind that the harmonic cavities will 
be operated passively, i.e., the fields in those cavities will 
be excited by the beam itself. Passive operation implies 
therefore that the fields excited in the harmonic cavities 
depend on the bunch density distribution, which, in turn, 
is determined by the sum of the fields in the main cavities 
and those in the harmonic cavities. Clearly a self-
consistent solution for the density distribution needs to be 
found.  

This problem has been treated by various authors 
before (e.g.[5]). A self-consistency equation is established 
for the determination of the equilibrium density 
distribution, in which the excitation of fields in the 
harmonic cavities is described by means a form factor, 
which is essentially the overlap between the harmonic 
cavity frequency response and the beam frequency 
spectrum. The beam frequency spectrum depends on the 
bunch shape and the frequency response of the harmonic 
cavity depends on the cavity properties (shunt impedance, 
quality factor, tuning angle). As long as the field in the 
harmonic cavities are such that the resulting equilibrium 
bunch density distribution is still symmetric, this form 
factor may be treated as a real parameter, i.e., one is 
justified in assuming that the phase of the fields in the 
harmonic cavity is independent of the bunch shape. 

The treatment described above (which we call a “scalar 
self-consistent treatment”) works well at relatively low 
harmonic cavity shunt impedances. However, passive 
operation of the harmonic cavities also implies operation 
on the Robinson unstable slope of those cavities, 
generating a Robinson growth rate that needs to be 
counteracted by the Robinson damping in the main 
cavities. This is made easier if the harmonic cavities are 
tuned far away from resonance, which in turn implies the 
need for high shunt impedance to reach the necessary 
field amplitudes that provide enough lengthening. This 
situation leads to a significant deformation of the bunch 
and it cannot be treated by the scalar self-consistent 
approach. Instead, both the amplitude and phase of the 
fields in the harmonic cavities must be taken as variables 
in writing up the self-consistent equations, which then 
become two dimensional – in other words, the bunch 
form factor that describes the excitation of fields in the 
harmonic cavities is now a complex number with an 
amplitude and a phase and we may define a “fully” self-
consistent solution. 

In the following sections we quickly review the 
calculations of the equilibrium bunch density distribution 
and analyse two cases: a low shunt impedance small 
detuning case and a high shunt impedance and large 
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detuning case, which highlights the difference between 
the scalar and fully self-consistent calculations.  

An overview of collective effects in the MAX IV 
storage rings has been given earlier [2] and a more 
detailed account based on time domain tracking 
calculations is given in this conference [6]. 

EQUILIBRIUM BUNCH DENSITY 
DISTRIBUTION IN DOUBLE RF 

SYSTEMS  
Double RF systems have been analysed by many 

authors [5,7] to which we refer the reader for a detailed 
discussion. Below we list the relevant results and 
establish our notation and conventions. We assume an RF 
system composed of  main and harmonic cavities so that 
the total voltage seen by the beam on every turn is given 
by: 

+  (1) 
where  is the main cavity 
voltage, . The harmonic 
cavity is assumed to resonate at a frequency close to the 

-th harmonic of the RF frequency. The parameters  and 
 define the amplitude and phase of the fields in the 

harmonic cavity. The equations of motion for the phase  
and energy deviation  are: 

 

where  is the momentum compaction 
factor,  is the harmonic number,  is 
the nominal energy,  μs is the revolution period 
and  is the energy loss per turn. The synchronous phase 
is given by: 

 
The equations of motion above can be derived from a 
Hamiltonian: 

  

and the corresponding equilibrium bunch density 
distribution is given by: 

  

 
where  is the equilibrium energy spread 
(determined from the interplay of quantum excitation and 
radiation damping). This distribution in the  phase 
space can be projected onto the  axis to yield the 
longitudinal equilibrium bunch density distribution: 

 (2) 

 
where  

 
The equations above are general in the sense that they 

apply to both actively and passively operated cavities. In 
the active case, however, both amplitude and phase can be 
chosen independently, whereas in the passive case, once 
the cavity shunt impedance is fixed (by its construction) 
only one parameter is available for optimization, namely 
the cavity tuning angle (or equivalently the cavity 
resonant frequency). In particular, we may choose to 
operate with “optimized” conditions [7], i.e. adjust the 
harmonic cavity voltage and phase so that both the first 
and second derivatives of the voltage at the synchronous 
phase are zero, so that an approximately quartic potential 
well is formed. This is possible for both passive and 
active operation, but in the passive case, optimized 
conditions are only reached at a given beam current for a 
given harmonic cavity detuning. 

SCALAR SELF-CONSISTENCY  
The response of the harmonic cavity to the excitation 

by the beam can be described by the cavity impedance 

 

where  is the cavity shunt impedance,  the quality 
factor and  the resonant frequency. In terms of 
the harmonic cavity detuning  and tuning angle  

 

 

we may write the voltage induced in the cavity as 
 (3) 

where  is the stored beam current and we have 
introduced the bunch form factor  

 (4) 

given by the Fourier transform of the bunch density 
distribution at the nth harmonic of the RF frequency and 
we identify: 

 

 
The equations above give us the recipe for finding 

, namely, given the beam current, harmonic cavity 
shunt impedance, harmonic cavity tuning angle and a 
bunch form factor, we may calculate the harmonic cavity 
voltage from eq. (3), determine the total voltage from eq. 
(1) and finally calculate the bunch density distribution 
from eq.(2). From this, the bunch form factor can be 
calculated back from eq.(4), which leads to a self-
consistency equation in one variable ( ) of the form 
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The equilibrium bunch form factor, which is a solution 
of the equation above, can be easily determined 
numerically. Figure 1 shows an example of such a 
calculation, in which the parameters have been chosen to 
correspond to the optimized case discussed in the 
previous section. A relatively low shunt impedance of 
2.02 MΏ is enough to generate a 54 mm RMS bunch 
length for 500 mA stored beam current. Note also that 
bunch shape is quite symmetric and centred around the 
synchronous phase. In this case, a full self-consistent 
analysis as described in the following section leads to 
nearly the same results. 

 
Figure 1: Equilibrium (scalar self-consistency) bunch 
density distribution for , HC detuning = -
28.4 kHz (Q=21600). The RMS bunch length is 54 mm. 
Energy loss per turn = 856 keV (machine loaded with 19 
IDs). Main cavity voltage = 1.63 MV. For comparison, the 
distribution with no HC present is also shown, 
corresponding to an RMS bunch length of 10.12 mm. 

FULL SELF-CONSISTENCY  
The full self-consistency is implemented by writing the 

harmonic cavity fields as 
 

where we have added the form factor phase . The 
same self-consistent equation used above can be used, but 
the form factor is now a complex quantity  
and the numerical root finding algorithm is replaced by a 
two dimensional minimization procedure. 

Figure 2 shows an example of fully self-consistent 
analysis for shunt impedance of 4.2 MΏ. Here a much 
larger cavity detuning is used, reducing the Robinson 
growth rate from the harmonic cavity fundamental mode. 
We note that a larger bunch lengthening can be obtained 
at the expense of a non-symmetric bunch shape. Finally, 
Figure 3 shows the resulting RMS bunch length and peak 
bunch density as a function of HC shunt impedance for a 
fixed HC tuning angle. 

CONCLUSIONS  
We have described a fully self-consistent analysis for 

the determination of the equilibrium bunch density 
distribution in a double RF system with passively 
operated harmonic cavities. The analysis has been applied 
to the case of the MAX IV 3 GeV ring and indicates that 

significant bunch lengthening of up to about a factor 5 
can be obtained, even at large detuning angles for the 
harmonic cavities.  

 

 
Figure 2: Fully self-consistent equilibrium density 
distribution for , HC detuning = -56.5 kHz.. 
The RMS bunch length is 69 mm. Other parameters are 
the same as in Figure 1. 

. 

 
Figure 3: RMS bunch length and peak bunch density as a 
function of HC shunt impedance for a fixed HC detuning 
of -56.5 kHz. 
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