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Abstract 
Particle accelerators at X-band frequencies have been 

shown to reach gradients of greater than 100 MV/m [1,2]. 
Such technology permits more compact accelerators. One 
of our aims at the Colorado State University (CSU) 
Accelerator Laboratory is to adapt this technology to our 
L-band (1.3 GHz) accelerator system to increase our 
overall beam energy; however, we would like to do this in 
a passive manner, i.e. one that does not require investment 
in an expensive, custom, and high-power klystron system. 
In this paper we explore using the beam from our L-band 
6-MeV photo-injector to power an X-band structure tuned 
to the 9th harmonic of our 1.3 GHz L-band system, 11.7 
GHz. Electron bunches will be generated at a repetition 
rate of 81.25 MHz and passed through a high shunt 
impedance X-band accelerating structure where they will 
resonantly excite the fundamental field. Once the peak 
gradient is achieved a single electron bunch can be passed 
through the system at a phase that places it near the crest 
of the X-band accelerating wave thereby increasing the 
electron bunch energy without need for additional 
external power sources. 

GENERAL CONCEPT  
The CSU Accelerator Facility will initially focus on the 

generation of long-wavelength, free-electron laser pulses, 
as well as the development of electron-beam components 
and peripherals for free-electron lasers and other light 
sources. It will also serve as a test bed for particle and 
laser beam research and development. 

One of the most important parts of this accelerator is 
the linac that was constructed by the Los Alamos National 
Laboratory for the University of Twente TEU-FEL 
Project [3]. In addition to the capabilities of this linac we 
would like to further increase the electron beam energy 
without additional significant investments. Our idea is to 
utilize the electron beam from the L-Band RF gun as a 
drive source for a passive X-band linac structure thus 
allowing us to increase the beam energy by using the L-
band power together with the inherent high shunt 
impedance of the X-band structure.  

PASSIVE X-BAND LINAC STRUCTURE  
Table 1 provides the basic parameters of the CSU 

accelerator system [4]. SLAC has had a long history of 
developing X-band accelerator systems [5]; unfortunately 
for us, their chosen frequency is at 11.424 GHz and this is 
not a simple multiple of 1.3 GHz. As such, we need to 
slightly redesign the basic X-band accelerating structure 
geometry to meet our need for operation at a reasonable 

harmonic of 1.3 GHz. For this study we have chosen the 
9th harmonic, i.e. 11.7 GHz. Given there are no existing 
11.7 GHz klystrons to power such a structure we consider 
an alternative power source. Here we propose to use the 
beam from the L-band system to resonantly drive the X-
band structure. 

We would like to achieve the highest possible energies 
for our given beam parameters and proposed X-band 
drive system and therefore we will design the X-band 
system to have the highest practical shunt impedance. 

 Table 1. Parameters of CSU Accelerator Laboratory  

Laser Frequency 81.25 MHz 
L-Band RF Gun Frequency  1.3 GHz 
L-Band RF Gun Energy 6 MeV 
L-Band Macropulse Length 10 s 
X-band Linac Frequency  11.7 GHz 
Repetition Rate 10 Hz 
RF gun Charge/Bunch 3.5 nC 

 
Geometry of the X-band Linac Structure 

In general, the aim is to transfer energy from the L-
Band RF wave to the electron beam, consisting of 
bunches of charged particles, and then from the electron 
beam to the RF wave induced in the X-band structure, 
thus we need to design a proper structure that maximizes 
this interaction. 

We start by modifying the linac structure geometry of 
some of the successful SLAC designs [6]. Adjustments 
were made to ensure that the structure was resonant at 
11.7 GHz, that it had high effective shunt impedance, that 
it was resonant on the  mode and that the iris dimensions 
were sufficient to ensure clean beam transport and 
minimize to some degree the effect of higher-order 
modes. As we plan to use an electron beam to provide 
power to the structure, a constant impedance structure is 
more appropriate than constant gradient. Figure 1 and 
Table 2 show the output from the design program 
SUPERFISH [7] following our optimization of the 
geometry using three different values for the iris to 
wavelength ratio, a/ = 0.2, 0.15, and 0.1. 

The Beam – Cavity Interaction 
We wish to study the beam-cavity interaction seen within 
an X-band linac structure driven by a beam produced in 
our L-band linac traversing the X-band linac. The 
schematic view of the beam-structure system is shown in 
Figure 2.  
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Substituting one finally arrives at the simple solution 
Vavail  Vs Vf   

i.e. the net potential achieved in the X-band system is 
exactly the potential lost by the beam from the L-band 
system. 

Once the X-band structure has been powered up to the 
full potential a properly phased electron bunch can then 
be injected and accelerated and, for a properly designed 
and configured system can raise the beam energy to 
nearly twice what would have been available from the L-
band system alone. 

Table 3: Beam – Cavity Interaction Parameters 

L-Band Bunch Charge  3.5 nC 

L-Band Initial Beam Energy  6 MeV 

L-Band Final Beam Energy 1 MeV 

X-band Max. Gradient  30 MV/m 

X-Band Shunt Impedance  191 MΩ/m 

X-Band Eff. Shunt Impedance 107 MΩ/m 

X-Band Q 8512 

X-Band Equivalent Capacitance 8.5e-14 F 

Damping Factor (t/ 0.1  

X-Band Cell length 0.01281 m 

Number of X-Band cells  13 

Total length of X-Band structure  17 cm 

Available X-Band Potential 5 MV 

DISCUSSION AND CONCLUSION 
The above result is independent of the frequency of the 

passive structure; however, the X-band system can be 
made much more compact due to its ability to handle the 
very high gradients. Nevertheless this basic result does 
represent a limitation. To achieve higher gradients one 
really needs to extract the X-band power and transfer it to 
a TW structure. This structure can be filled over a period 
of time thus utilizing the time-integrated power of the L-
band beam. 

We have shown that by proper design we can, by 
utilizing the beam from our L-band linac, resonantly 
excite an X-band accelerating structure to meaningful 
accelerating gradients. In our design example we can 
achieve up to 6-MV additional accelerating potential. 
Configured properly this implies that we can periodically 
achieve beam energies almost double our original 6 MeV 
and potentially reach roughly 12-MeV in occasional 
single pulses without the need for an additional X-band 
power source. 
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