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Abstract
For various cases, e.g. in the long undulator sections

of the European XFEL, quantum diffusion and energy loss

have a noticable effect on the electron trajectory, which in

turn effects the properties of the emitted radiation. We dis-

cuss approaches to modelling the electron dynamics taking

this into account and the effect it has on spontaneous radi-

ation emission.

INTRODUCTION
When calculating synchrotron radiation emitted in long

undulator sections, beam energy distribution dilution

caused by quantium fluctuations in the radiated energy has

to be taken into account. At the same time, one often does

not need to consider the quantum nature of the radiation it-

self, so it is sufficient to consider radiation computed clas-

sically, averaged over an ensemble of fluctuating trajecto-

ries. In this note the approaches for such random trajectory

calculations are discussed and various numerical examples

given.

DIFFUSION APPROXIMATION
The equations of motion in a magnetic field without tak-

ing energy change into account are

β̇ =
e

meγ
β ×B (1)

Now assume that in time Δt the electron looses energy

due to (random) emission of radiation quanta. The ap-

proach to including the energy loss is to consider an elec-

tron moving on a certain trajectory where the emitted spec-

trum is known, such as a circular path or a sinusoidal path

in an undulator, and then calculating its mean and vari-

ance. For an electron moving on a path with a constant

radius of curvature ρ this can be obtained according to

[1]. The assumption is that during the time Δt = ρ/γc
the radius of curvature stays constant (the time needed

for the radiation cone to sweep by an angle 1/γ). Since

γme[GeV/c] = ρB[T ] · 0.2998 the requirement that the

path length during this ’emission time’ is much less than

the undulator period

Δt · c = ρ/γ = me[GeV ]/0.2998B[T ] � lw[m]

or roughly

1/B[T ] � 6 · lw[cm]
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This condition is not always fulfilled for XFEL undula-

tors when K is small. Consider an electron moving along

a circular trajectory with constant curvature. The relevant

radiation characteristics are summarized below.

Table 1: Summary of SR properties

Power spectrum P(ω, t) =
Pγ

ωc
S( ω

ωc
)

Photon distribution n(u) =
Pγ

u2
c
F ( u

uc
) u = h̄ω

Universal SR functions S(ξ) = 9
√
3

8π ξ
∫∞
ξ

K5/3(ξ̂)dξ̂

F (ξ) = 1
ξS(ξ)

Critical energy ωc =
cγ3

ρ uc =
3
2
h̄cγ3

ρ

Total power Pγ =
cCγ

2π
E4

ρ2

Cγ = 4π
3

re
(mec2)3

Curvature 1
ρ

[
m−1

] ≈ 0.2998 B[T ]
E[GeV ]

Photon statistics 〈N〉 = 15
√
3

8
Pγ

uc
〈u〉 = 8

15
√
3
uc〈

u2
〉
= 11

27u
2
c

In the diffusion approximation the energy change can be

described by a stochastic differential equation

dγ

dt
= a(γ) + b2(γ)dWt (2)

The drift coefficient a(γ) is describing the continuous

loss of energy, and the diffusion coefficient b(γ) the fluctu-

ations.

mec
2a(γ) = lim

Δt→0

〈ΔE(Δt)〉
Δt

(
mec

2
)2

b2(γ) = lim
Δt→0

〈
ΔE2(Δt)

〉− 〈ΔE(Δt)〉2
Δt

where E(Δt) is the energy loss during time Δt. Assum-

ing that the energy of each emitted photon and number of

photons emitted are not correlated, and the latter has Pois-

son statistics with the property
〈
N2

〉
= 〈N〉2 + 〈N〉, one

has

〈ΔE(Δt)〉
Δt

→ 〈Nu〉 = 〈N〉 〈u〉 = Pγ

(which is exactly the mean power loss definition), and

〈
ΔE2

〉
Δt

=

〈
N2(Δt)u2

〉
Δt

=

〈
N2(Δt)

〉 〈
u2

〉
Δt

=(
〈N〉Δt+ 〈N〉2 Δt2

) 〈
u2

〉
Δt

→ 〈N〉 〈u2
〉

TUPEA005 Proceedings of IPAC2013, Shanghai, China

ISBN 978-3-95450-122-9

1170C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

02 Synchrotron Light Sources and FELs

A06 Free Electron Lasers



and furthermore observing that

lim
Δt→0

〈ΔE〉2
Δt

= lim
Δt→0

P 2
γΔt = 0

we arrive at

a(γ) =
Pγ

mec2

b2(γ) =
55
√
3

72m2
ec

4
Pγuc

(3)

Noting that in the planar undulator the mean field is

B =
πKme

lwc

and using expressions from Table 1 we get

〈
d(δγ)2

〉
d(ct)

=
b2(γ)

c
=

γ4

l3w
K3 × g

Where g is some numerical constant. Following similar

approach, but taking the undulator radiation spectrum as

a starting point, Saldin et. al. [2] derived the following

approximate expression for diffusion in an ideal undulator

field

〈
d(δγ)2

〉
d(ct)

=
122π3

15
λcre

γ4

l3w
K3 × f(K)

f(K) =

⎧⎪⎨
⎪⎩

1.20 +
1

K + 1.50K2 + 0.95K3
, planar

1.42 +
1

K + 1.33K2 + 0.40K3
, helical

For K << 1 the two approaches lead to different asymp-

totics, and the approach based on local field value should

not be used. For K > 1 both approaches can be used. For

an XFEL 40mm and 68mm undulators, the diffusion coef-

ficients for different beam energies and K parameters are

shown in Fig. 1. Electron trajectories are calculated by

solving 1 and 2 Numerically. Since the characteristic time

scales in these equations are different, they can be solved

with different time step. Furthermore, whereas 1 is oscil-

latory and for solving it 4th order Runge-Kutta method is

preferable, 2 can be solved by a simpler stochastic method,

e.g. leap-frog.

MONTE CARLO METHOD
In [3] and references therein a Monte Carlo approach

for generating synchrotron radiation spectrum has been de-

scribed. We now use similar algorithm to compare the dif-

fusion approximation to direct Monte Carlo simulations of

the emitted photons taking electron recoil into account. In

the following the algorithm is briefly outlined.

First, one assumes that photon emission is a Poisson pro-

cess with a mean free path ctMF . It is assumed that over

Figure 1: Diffusion coefficients for SASE XFEL undula-

tors. Vertical axis is beam energy, hotizontal is K

this length the electron path is circular (or that the radia-

tion spectrum can be from certain considerations approxi-

mated by that of an electron travelling on some average cir-

cular path). Then one generates a random time according

to Poisson distribution and then simulated electron recoil

according to relativistic kinematics

Δβx = βx − Eω

mec2γ
sin

βx

βz

Δβz = βz − Eω

mec2γ
cos

βx

βz

Δγ = γ − Eω

mec2

Now the task is to generate photon energies Eω accord-

ing to the universal function, which is up to a constant fac-

tor

F (ξ) =

∫ ∞

ξ

K5/3(ξ̂)dξ̂

Sampling from such a distribution is accomplished in a

standard way by generating a uniformly distributed number

y on [0, 1] and then calculating F−1
INT (y), where
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FINT (y) = (2.19)−1

∫ y

0

F (ξ)dξ

is the appropriately normalized cumulative distribution

function

Figure 2: Spectrum of photons generated with the Monte

Carlo method (normalized), and the corresponding theoret-

ical universal distribution function

A numerical fit with a 3rd order Chebyshev polynomial

leads to the following approximation for F−1
INT (y)

1.

−1.87 + 4.31T1(y)− 1.80T2(y) + 0.99T3(y) y < 0.889
−0.48ln(1− y) y ≥ 0.889

(4)

Comparison of stochastic integration to direct Monte

Carlo simulations show consistent results for the parameter

space of the European XFEL (see Fig. 3). For K << 1 the

direct Monte Carlo method described here will not be le-

gitimate. Although not of direct practical importance, this

case might be interesting for calculating inverse Compton

scattered photons [4] with the help of SR theory in appro-

priate rest frame.
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1The author has not been able to reproduce the results from [3] with the

fitting coefficients quoted there, and the fitting in this note is different. The

accuracy of the fitting formula used in the present work can be of course

improved by considering piecewise approximations with more intervals

or polynomials of higher order, this however does not look necessary for

the purpose considered.

Figure 3: Energy spread γ/γ0 at the undulator exit, from

initially delta-distributed beam. Direct Monte Carlo (solid)

and stochastic integration (dashed), for 17.0 GeV Beam,

K=1.0, over 100m

Figure 4: Spectrum of emitted photons E=17.0 GeV, K=1.0

Figure 5: Monte Carlo simulation of emitted photons from

one electron, E=17.0 GeV, K=10
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