
EPICS ACCELERATOR CONTROL
SYSTEM FOR THE IAC-RadiaBeam THz PROJECT

Anthony Andrews∗, Y. Kim, C. Eckman, P. Buaphad,
T. Downer, C. O’Neill, B. Berls, K. Folkman, and J. Ralph,

Idaho Accelerator Center, Idaho State University, Pocatello, ID 83201, USA

Abstract

The Idaho Accelerator Center (IAC) of Idaho State Uni-

versity has been operating a 44 MeV L-band linac for var-

ious nuclear physics related applications [1]. However, for

the past several years, this research has been done with-

out the aid of a modern computer based control system.

To obtain a better reproducibility and stability in operation,

the EPICS accelerator control system has been applied to

control various components of this linac. This has been

done for the purpose of a joint THz research project be-

tween IAC and RadiaBeam that was performed in Novem-

ber 2012 [1, 2]. This paper describes the development of

the EPICS accelerator control system used during this joint

THz research experiment.

INTRODUCTION

To get a better reproducibility and stability for the IAC-

RadiaBeam THz project, the analog control system for the

44 MeV was upgraded to a computer based accelerator

control system. To do that, various control systems using

the Experimental Physics and Industrial Control System

(EPICS) have been developed. As shown in Fig. 1, the con-

trol system for the THz project had three different device

types: seven TDK-Lambda ZUP magnet power supplies,

one Lambda EMS magnet power supply, and two Prosil-

ica GC1290 GigE CCD cameras [3–5]. The Lambda EMS

magnet power supply used during this THz experiment has

the embedded IEEE 488 controller. However, the devel-

opment of a control system for some Lambda EMS mag-

net power supplies with the external RSTL controller will

be described in the next conference paper. For the IAC-

RadiaBeam THz project, the power supplies were con-

nected to their own dedicated MOXA terminal server with

an RS485 interface for the TDK-Lambda ZUPs, and an

RS485-RS232 conversion interface for the Lambda EMS

power supplies [6]. Then, terminal servers and two Prosil-

ica GC1290 GigE CCD cameras were connected to the

EPICS server via an isolated network using Ethernet ca-

bles and a 3Com network switching hub. After that, a

means to communicate with the power supplies and CCD

cameras was developed by using three EPICS modules

(ASYN, StreamDevice, and areaDetector) supplied with

the synApps package [7, 8]. Then, device support appli-

cations were manually programmed for the power supplies

and the module areaDetector was used to control one of the

CCD cameras. Finally, the current of the power supplies

∗Mail: andranth@isu.edu

Figure 1: Experimental setup of EPICS server and hard-

ware.

and various parameters of the cameras were controlled by

manipulating process variables (PVs) using MEDM Oper-

ator Interface (OPI) panels.

DEVICE SUPPORT APPLICATIONS
In order to control the magnet power supplies and CCD

cameras, the first step was to download and install the cor-

rect software to communicate to them. Then, in the case

of the power supplies, make device support applications

which contain the files required to create PVs. The de-

vice communication was accomplished by installing the

synApps software package including ASYN, StreamDe-

vice, and areaDetector [7, 8].

areaDetector
The program areaDetector is an EPICS module and a

pre-made device support application that is specific to de-

vices like the Prosilica GC1290 GigE CCD camera. This

program contains PVs and OPI panels specific for the con-

trol of the CCD camera. So, once installed, the only things

that are required are some configuration on the camera to

get an image, and some file configuration in areaDetec-

tor [8]. 1

1For some details on ASYN and StreamDevice, see reference [9]

Proceedings of IPAC2013, Shanghai, China THPEA061

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

ISBN 978-3-95450-122-9

3279 C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

Camera EPICS Configuration
To get the camera to work with EPICS, the first step was

to configure the Ethernet adapter with MTU 8228 and set

a static IP address for the camera under Windows OS. This

was accomplished by using the IPConfig program, which

was packaged with the SampleViewer program [5, 10].

Then one camera was used on Linux to give live image ac-

quisition of the beam using SampleViewer. The other was

used with EPICS, also on Linux, for automatic emittance

measurements [10]. To have EPICS recognize the CCD

camera, the static IP address was added to the st.cmd file in

the areaDetector software distribution directory. The entry

looked similar to this:

• prosilicaConfig(PS1, 10.x.y.z, 50, -1)

The 10.x.y.z represents the static IP address of the cam-

era. The variable PS1, represents a mapping for the static

IP address. Whenever this PS1 is seen in files, it means

the code is referring to the camera identified with 10.x.y.z.

The 50 refers to the NDArray maximum buffer size for the

camera. The -1 refers to the maximum bytes the driver for

the camera can handle. For this project, the only thing that

was changed from the st.cmd file default was the static IP

address. After putting the static IP address in the st.cmd

file, the control system for the camera needs to be able to

locate the OPI displays used for control. To do this, all

files with extension .adl, in the areaDetector software dis-

tribution directory, were copied to an “adls” directory under

user home. Afterwards the envPaths file, in the same direc-

tory as st.cmd, was renamed envPaths.linux, and then the

camera worked by running the start epics file in that same

directory [8].

Application Creation for Power Supplies
The creation of PVs for both types of power supplies

were similar to each other. Therefore, in this paper, the

control system for the Lambda-EMS will be treated. 2 First

of all, before creating PVs for the Lambda EMS magnet

power supply, the default echo setting on the Lambda EMS

was disabled and a device support application was created

for the PVs to live in. To create the application, the follow-

ing commands were used [7]:

• makeSupport.pl -t streamSCPI dev

• makeBaseApp.pl -t ioc dev1

• makeBaseApp.pl -t ioc -i dev1

The first command makes a support directory where the

files to create PVs are located. The second command cre-

ates a configure and an application directory. The third

command creates an iocBoot directory, which contains the

st.cmd file [7]. The “dev” and “dev1” are arbitrary names

for the support directory, application directory, and the

name of the directory, within iocBoot, where the st.cmd
file is located. In order to create PVs, two types of files are

required, protocol files and database files.
2For a guide on creating PVs for the TDK-Lambda ZUP magnet power

supplies, see reference [9].

Protocol Files

The module StreamDevice uses protocol files to trans-

late commands that follow the SCPI (Standard Commands

for Programmable Instruments) standard into a format that

EPICS records can use [9]. For example, the SCPI query

command MEASURE:CURRENT? looks like this:

• getMC{out “MEASURE:CURRENT?”; in “%6f”;

in “OK”;}
In this case, getMC is a protocol, which sends the query

command MEASURE:CURRENT? “out” to the device and

gets a response “in” from the device. For the Lambda EMS

there are two “in” responses, the first is a number with six

floating digits, and the second is an “OK” response from

the device that says that the device has received some kind

of command. The other key component for making a PV is

a record in a database file. 3

Database File

The database files are where the records are located. The

PVs are made by putting the protocol name (i.e. getMC)

into the input or output fields in the record [7, 9]. Here is

an example of a record to read the current:

record(ai, “$(P):BC chicane:curr r”) {
field(DESC, “Measure Current”)

field(SCAN, “.1 second”)

field(DTYP, “stream”)

field(INP, “@EMS.proto getMC $(PORT5) $(A)”)

field(PREC, “3”)

field(EGU, “Amps”)

field(HOPR, “18”)

field(LOPR, “0”) }
In the record above, a field of particular interest is the INP

field. This field sends the command defined as the protocol

“getMC” located in the protocol file “EMS.proto” to the

port and address of the device. The $(PORT5), $(A), and

$(P) are all defined in the st.cmd file.

st.cmd File

This is an executable file that establishes a connection

to the device by using an IP address, a portName, and an

address. This file also loads all of the records that are in

the database files. The way the IP address of either power

supply was specified was by using a line similar to the fol-

lowing in the st.cmd file:

drvAsynIPPortConfigure(“P5”,“134.50.A.B:4005”,0,0,0)

Here P5 is a portName, which is an arbitrary identifier

used to define $(PORT5) from records as an IP address

(134.50.A.B) and a port (4005) of the MOXA terminal

server [7]. In this case, P5 was used because this particular

power supply was connected to the fifth port of the MOXA

3For more protocol file information and more on SCPI commands, see

reference [9]

THPEA061 Proceedings of IPAC2013, Shanghai, China

ISBN 978-3-95450-122-9

3280C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

Figure 2: An MEDM OPI pannel to control and read the

current of the power supplies.

terminal server. The rest (0,0,0) specifies priority, noAu-
toConnect, and noProcessEos [7]. To specify a database

in the st.cmd file, a line similar to the following thing was

used:

dbLoadRecords(“db/EMS.db”,“P=$(P),PORT5=P5,A=5”)

Here the EMS.db is the database file that contains all of the

needed records. The macro P is used as a device identifier,

in this case P is 44MeV. The PORT5 is the same as the

portName. The address (A=5) for this set-up ran from 1 -

32, because there were 32 ports on each MOXA terminal

server [7].

MEDM OPI

Motif Editor and Display Manager (MEDM) is an

EPICS extension which provides a way to create simple

OPI’s [9]. The OPI developed for use in the THz experi-

ment to control the current of the power supplies is shown

in Fig. 2. This display is cropped from the original to

emphasize the magnets that were controlled by EPICS in

this experiment. The boxes above each magnet control the

power supply for that magnet (or magnets in the case of

the chicane controller). A blown up representation of the

controller is shown in Fig. 2 at the bottom. The opera-

tor changes the current set value digit by digit by clicking

the arrows, and the actual readback value is represented in

the box above the controller. For the TDK-Lambda ZUP

power supplies, there is an additional indication box next

to the readback that represents whether the output of the

power supply is on (green color) or off (red color). The but-

tons on the right hand side of the display are to “RESET”

the power supplies current values to 0, and “Shutdown” the

power supplies at the end of operation. 4

4For information on the OPI used for the camera control, see refer-

ences [8, 10]

CONCLUSION
The goal for this project was to make an EPICS con-

trol system for a set of TDK-Lambda ZUP power supplies,

Lambda EMS power supplies, and Prosilica GigE cameras.

This was accomplished by using ASYN and StreamDevice

to communicate with the power supplies and convert SCPI

commands into PVs. Then an MEDM OPI was developed

to control and monitor those PVs. To control the cameras,

areaDetector was installed which came with the needed

PVs and MEDM OPI displays. Using this EPICS accel-

erator control system, the operators and scientists involved

in the joint IAC-RadiaBeam project were able to success-

fully detect THz radiation from the 44 MeV linac [11, 12].

ACKNOWLEGEMENTS
I would like to thank Jeff Bush, the technical group

leader at TDK-Lambda Inc., for all of his help configur-

ing and troubleshooting problems with the Lambda EMS

power supplies through email correspondence. I would

also like to thank Dr. Kukhee Kim and Dr. Debbie Rogind

for teaching me a lot about developing displays through my

internships at SLAC national accelerator laboratory in 2011

and 2012.

REFERENCES
[1] http://www.iac.isu.edu

[2] http://www.radiabeam.com/index.html?gclid=

CLDG1p2K1bYCFaF7QgodODoAmw

[3] http://www.tdk-lambda.com/products/sps/ps_

adj/zup/indexe.html#

[4] http://www.us.tdk-lambda.com/hp/product_html/

emspower1u.htm

[5] http://www.alliedvisiontec.com/emea/products/

cameras/gigabit-ethernet/prosilica-gc/gc1290.

html

[6] http://www.moxa.com/product/nport_6650.htm

[7] E. Norum,“HowToDoSerial(StreamDevice),” Argonne

National Laboratory; http://www.aps.anl.gov/epics/

modules/soft/asyn/HowToDoSerial_StreamDevice.

html

[8] M. Rivers, “areaDetector: EPICS Area Detector Support,”

The University of Chicago; http://cars9.uchicago.

edu/software/epics/areaDetectorDoc.html

[9] A. Andrews et al., in Proc. IPAC2012, New Orleans LA,

USA.

[10] C. Eckman et al., in these proceedings.

[11] Y. Kim et al., in these proceedings.

[12] A. V. Smirnov et al., in these proceedings.

Proceedings of IPAC2013, Shanghai, China THPEA061

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

ISBN 978-3-95450-122-9

3281 C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

