
WPF BASED EPICS SERVER AND ITS APPLICATION IN CSNS

Yuliang Zhang, Ge Lei
Institute of High Energy Physics, Beijing, 100049, China

Abstract
The control system of China Spallation Neutron Source

(CSNS) is under construction based on EPICS. The Linac
low level RF (LLRF) local control program running on a
local control PC uses Windows Presentation Foundation
(WPF) as its development tool and uses the C# codes to
implement the functionality. The Linac LLRF control
system is non-EPICS, so the Linac LLRF local variables
can’t be accessed directly from EPICS. Therefore we need
to port the Linac LLRF local control system to EPICS.
This paper presents the WPF base EPICS server and its
application in CSNS.

INTRODUCTION
The control system of CSNS is under construction

based on EPICS. Local control system for CSNS Linac
LLRF system is currently being developed by the LLRF
people. Figure 1 shows Linac RF system prototype. RF
control system consists two parts: local control program
running on a control PC and local RF control hardware,
i.e. customized I/O modules and PLCs. The local control
program is hosted on an IPC running Windows Xp and it
communicates with local RF control modules and local
control PLCS vi 100Base-T Ethernet [1]. Linac LLRF
local control system is a non-EPICS system and it can’t
be directly accessed from EPICS software. In order to
access the Linac LLRF local control system via EPICS
and to facilitate the operation and maintenance, the Linac
LLRF control system must be ported to EPICS.

FPGA & DSP DIGITAL
ASSEMBLY CAVITY

Figure 1: Linac RF system prototype block diagram.

We have considered two ways of porting Linac LLRF
control system to EPICS. One is running an soft IOC
independent of LLRF local control system, the other way
is embedding an EPICS server to the WPF based local
control program. For the first method, we need to develop
the EPICS drivers for communication between the soft
IOC and the LLRF local hardware via Ethernet, which
will take a lot of work and the existing C# codes can’t be

reused. For second method, the work we need to do is
embedding a C# EPICS server to WPF based local control
program and associate the local variables to CA Records,
and also we can reuse the existing C# codes.

MICROSOFT .NET FRAMEWORK AND
WPF

.NET Framework

Windows Presentation Foundation
Windows Presentation Foundation is a computer

software graphical subsystem for rendering user interfaces
in Windows-based applications [3]. WPF, previously
known as "Avalon", was initially released as part of .NET
Framework 3.0. Rather than relying on the
older GDI subsystem, WPF utilizes DirectX. WPF
attempts to provide a consistent programming model for
building applications and provides a separation between
the user interface and the business logic. It resembles
similar XML-oriented object models, such as those
implemented in XUL and SVG.

WPF employs XAML, an XML-based language, to
define and link various UI elements. WPF applications
can also be deployed as standalone desktop programs, or
hosted as an embedded object in a website. WPF aims to
unify a number of common user interface elements, such
as 2D/3D rendering, fixed and adaptive documents,
typography, vector, graphics, runtime animation, and
pre-rendered media. These elements can then be linked
and manipulated based on various events, user

The .NET Framework [2] is a software framework de-
veloped by Microsoft that runs primarily on Microsoft
Windows. It includes a large number of libraries and pro-
vides language interoperability (each language can use
code written in other languages) across several pro-
gramming languages. Programs written for the .NET
Framework execute in a software environment, known as
the Common Language Runtime (CLR), an application
virtual machine that provides services such as
security, memory management, and exception handling.
The class library and the CLR together constitute
the .NET Framework. The .NET Framework's Base Class
Library provides user interface, data access database
connectivity, cryptography, web application development,
numeric algorithms, and network communications.
Programmers produce software by combining their
own source code with the .NET Framework and other
libraries. The .NET Framework is intended to be used by
most new applications created for the Windows platform.
Microsoft also produces an integrated development
environment largely for .NET software called Visual
Studio.

THPEA011 Proceedings of IPAC2013, Shanghai, China

ISBN 978-3-95450-122-9

3170C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

interactions, and data bindings.

EPICS C# LIBRARY AND
CASHARPSERVER

 EPICS C# library was developed at the Paul Scherrer
Institut. It is offering a complete EPICS environment
containing CaSharpServer library [4] and EpicsClient
library [5]. The Library is fully independent and
implemented to offer a maximum of portability. It has
very clean and easy interface and has a high performance
(connects and receives first monitor value for 32‘000
channels in ~16 seconds). In the latest version, it splits to
Epicsclient library and EPICS server library, i.e.
CaSharpServer library.

The CaSharpServer handles everything from TCP &
UDP listening to C# interface based on cosylab’s reverse
engineered protocol specification. It is a standalone
library and does not require any EPICS modules installed.
It can run on .NET and MONO.

The CaSharpServer allows you to publish C# variables
to the EPICS Network. The published variables are
encapsulated in CARecords and will behave like they
would be real EPICS records, so you can use all EPICS
compatible tools on those records. It supports Monitors,
Get, Put and is compatible with the C-Channel Access
Library. The CaSharpServer library version 1.0.0 supports
numeric, string and array type record, and on this basis we
added the enumerated type record, and also we changed
UDP port in class CABeacon to 5064 to compatible with
the standard C-CA beacon UDP port. It is very easy to
create an EPICS server using CaSharpServer library, the
following codes is a simple example to create a C# EPICS
server:

static void Main(string[] args)
{
 //create the server
 server = new CAServer(

IPAddress.Parse("127.0.0.1"), 5064, 5064);
 //create a new string type record
 stringRecord= server.CreateRecord<

CAStringRecord>("STRING:RECORD");
 //set scan frequency is 10Hz
 stringRecord.Scan = ScanAlgorithm.HZ10;
 //add event handler to the string record
 stringRecord.PrepareRecord += new EventHandler(

stringRecord_PrepareRecor);
 …….
 }

PORTING CSNS LINAC LLRF CONTROL
SYSTEM TO EPICS

CSNS Linac LLRF control system adopt WPF as the
develop tool for the local control program running on
local IPC, and uses C# to implement the functionality. We
considered embed a C# EPICS server to the WPF based
local control program to port Linac LLRF control system
to EPICS. In this way, the C# EPICS server and local
control program are connected seamlessly, the local

variable can easily associated with CARecords resides in
C# EPICS server. Figure 2 show the sketch diagram.

Figure 2: Embed C# EPICS server into LLRF control
block diagram

In order to associate local C# variables with
corresponding CARecords, one need to provide some
extra C# codes to set local C# variables to CARecords or
get value to local C# variable.

For example, if setting the value of a WPF TextBox
widget to a CARecord named ‘stringRecod’ will result the
C# server posts a value change ‘MonitorMask’, and
EPICS clients can notice this value changing. It is just one
line codes as below:

stringRecord.Value = textBox1.Text;
It is a bit more complex to update the widget’s value

according to the CARecord’s value. The following codes
show the detail:

stringRecord.PropertySet += new EventHandler<
PropertyDelegateEventArgs>(stringRecord_PropertySe
t);
void stringRecord_PropertySet(object sender,
PropertyDelegateEventArgs e)
{

this.Dispatcher.BeginInvoke
((Action)(()=> { this.textBox1.Text =
e.NewValue.ToString();
}));

 }
Still for this stringRecord, first we have to add an event

handler to this record, second we need to implement the
event handler function. This event handler function is like
C-Callback function, which is a type-safe function
pointer it is known as delegate that can be used to
implement callbacks. In event handler function
‘stringRecord_PropertySet’, it provide a no parameter
delegate ‘Action’ to process the message, in this example
assign stringRecod’s new value to TextBox.

CONCLUSION
The WPF base EPICS server has been developed and

tested for the CSNS Linac LLRF control system in order
to port LLRF local control system to EPICS. The
preliminary work we have done for the Linac LLRF local
control system prototype shows that this method works

Proceedings of IPAC2013, Shanghai, China THPEA011

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

ISBN 978-3-95450-122-9

3171 C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

well. We still need to do more tests and work in the next
few months.

 ACKNOWLEDGMENT
The author would like to thank Bertrand Alain Gregor

from PSI for his support and helpful discussions.

REFERENCES
[1] Jian Li et al., “CSNS Linac RF System Design and R&D

Progress,” Proceedings of Linear Accelerator Conference
LINAC2010, Tsukuba, Japan, THP046, p.863;
http://www.JACoW.org.

[2] http://en.wikipedia.org/wiki/.NET_Framework.
[3] http://en.wikipedia.org/wiki/WPF.
[4] http://gfa-it.web.psi.ch/epicsSharp/index.php.
[5] Christoph Seiler, “Channel Access Library in C#,”

http://isacwserv.triumf.ca/epics09/meeting.pl?p=agenda.

THPEA011 Proceedings of IPAC2013, Shanghai, China

ISBN 978-3-95450-122-9

3172C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

