
THE ACCELERATOR CONTROL SYSTEM AT ELSA

D. Proft∗, F. Frommberger and W. Hillert, ELSA, Bonn, Germany

Abstract
To fulfill the new requirements of the post-accelerator

mode of the electron stretcher facility ELSA, a new com-

puter control system was developed during the early 1990s.

Providing capabilities to control and monitor the facility,

it represents the top layer of a distributed control system

composed of HP workstations, VME and field bus proces-

sors as well as linux based personal computer s. In addition

to regular updates and improvements, the HP-UX operated

part of the control system recently was ported to linux, so

the outdated HP workstations could be replaced by a single

linux PC.

All reference values, for example the betatron tune or

the extraction energy, can be specified using a window-

based graphical user front end. They are directly computed

to hardware compatible representations. Vice versa, mea-

sured beam parameters, e.g. the transversal beam emit-

tance, are displayed for easy user access, allowing real

time diagnostics. This abstraction layer allows for an intu-

itive approach to machine operation, requiring no detailed

knowledge of the hardware implementation.

In this contribution, the design principles and imple-

mentation at different layers of the control system are pre-

sented, taking the recent changes brought by the migration

to linux into account.

HISTORY
Until 1994 the ELSA stretcher ring was operated in

the stretcher mode [1]. An electron beam prepared in

the 50 Hz booster-synchrotron could be injected into the

stretcher ring and extracted to hadron physics experiments

at variable energy between 0.5 GeV and 1.6 GeV. In the

early 1990s higher energies (up to 3.2 GeV) were asked

for by the experiments, making a post-acceleration mode
inevitable.

Going along with the energy increase, a fast ramp of

the main magnets’ power supplies in the stretcher ring is

needed. Therefore, a considerable amount of magnetic

field calculations beside long vectors containing power

supply current ramps have to be processed. Additionally,

a fast ramp up to 3.2 GeV within 300 ms puts high re-

quirements on the beam diagnostics devices and the data

analysis.

Neither the hardware running the existing control sys-

tem, nor the control system itself had enough capabilities

to fulfill these new requirements [2]. Hence, a new control

system with support for the existing hardware (approx. 50

in-house developed, so-called MACS IO boards interfac-

∗proft@physik.uni-bonn.de

kernel-
programs

database

application
programs

ethernet, UDP/TCP

database

application
programs

drivers

database

application
programs

drivers

power-
supply

database

application
programs

drivers

measure-
ment

power-
supply

menu system

X-forwarding

process layer
- VMEs

- Linux PCs

control layer
- Linux PC

fieldbus layer
- PLC systems

- MACS systems

device layer

menu layer
- X window
client

Figure 1: Hard- and software layers of the control system.

ing the hardware devices) was developed in-house [4]. In

1995, the old control system was successfully replaced by

the new one.

Besides continuous improvements of the software com-

ponents over the last years the system was ported from HP-

UX (running on three HP workstations) to linux in the end

of 2012, so it can now be run under any linux operating

system.

DESIGN PRINCIPLES
Some basic design decisions have been made before the

development took place [3]. The main features include a

completely event based data handling model and a sepa-

ration of core functionality (database and event handling

by the kernel) from userspace applications. It combines

steering tasks and real time beam diagnostics in one homo-

geneous environment. A transparent design allows access

to the X windows-based graphical user interface from any

computer.

Menu System
The whole control system consists of 5 hard- and soft-

ware layers (see Fig. 1). On top of them the graphical user

interface gives access to all the accelerators parameters. It

combines all steering tasks and the beam diagnostics in one

platform. The user can choose from approximately 600 hi-

erarchically ordered menus, reaching the desired menu in

less than eight clicks.

Proceedings of IPAC2013, Shanghai, China THPEA002

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

ISBN 978-3-95450-122-9

3149 C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)



application:
changed
value

database
write

rule
input

parameters
output

parameters

rule 1

rule 2

expert engine X

...
re
a
d

sn
a
p
sh

o
t w

rite
sn

a
p
sh

o
t

triggers

Figure 2: Expert engines.

Control Layer
The next layer — the control layer — consists of the

kernel managing a shared memory database containing all

parameter definitions and values. The database is sepa-

rated into several parts, i.e. the resource base containing

structural informations about parameters like limits, max.

number of vector elements and the quantity’s physical unit.

The structural information is complemented by the online

database filled with actual parameter values, which are

updated continuously at runtime. Every parameter value

administered by other control hosts is stored in a cache

database to give applications easy access to this parameter

as well.

All databases are stored in a shared memory. Any ap-

plication wishing to access the database attaches to the

shared memory and has direct and fast access to it with-

out any wrapper. The mutual exclusive access to the online

database is enforced by semaphore locking.

The core applications taking care of the database are

extended by so-called expert engines. They represent the

physical intelligence of the control system, bringing in

any physical calculations needed to operate the accelera-

tor. Each expert engine can handle a set of rules which are

basically finite state machines. The rule engine is supplied

with a consistent database snapshot of all parameters cap-

tured at the same time, and itself writes all computed values

back to the online database (see Fig. 2).

The kernel and the application programs are not limited

to be operated on one single computer. The database is

ready to be distributed to several computers, each main-

taining a defined range of parameters. Thus, the system can

be easily extended and the overall load (currently approx.

13000 parameters) can be distributed to many machines.

Since the computer CPU power increased drastically in the

last years, the system is now running on a single linux per-

sonal computer replacing the three old HP workstations.

Process Layer
The hosts on the control layer are not suitable for direct

hardware communication. Therefore, a new middle layer,

the process layer was introduced. Initially, it consisted of

several VME CPUs running the real time operating system

VxWorks. All VME computers are diskless clients boot-

ing off from a central NFS server and are attached to the

control host(s) via ethernet. Several years ago, the infras-

tructure was extended by a continuously growing number

of computers supplied with Intel CPUs. These are running

an adopted version of the original process system software.

As operating system any linux distribution is suitable.

The process system hosts, regardless whether they fea-

ture VME or Intel CPUs, are equipped with several bus in-

terface cards: HDLC, GPIB, serial interfaces (RS-232/RS-

485), CAN-bus and PROFIBUS. Additionally, plug-in

cards for ADCs or DACs are used within several systems.

A set of defined parameters is assigned to each process

layer host during its boot sequence. This includes the struc-

tural information beside the runtime values, again orga-

nized in a shared memory database. Synchronization with

the control hosts is done via network connections using

RPC (TCP) and UDP.

For high level applications running on the control hosts

the explicit assignment of parameter to process hosts is

completely out of scope. This transparent design allows

moving the parameters to different hosts without changing

the corresponding application.

Fieldbus and Device Layer
Finally, the last layer includes all interfaces communi-

cating directly with the hardware and the hardware devices

themselves. The wide variety of power supplies is equipped

with in-house developed interface cards. Digital and ana-

log nominal values are directly fed into the interfaces by

the MACS I/O boards. These are directly connected to

the VME systems via an HDLC interface with 1.25 MBd.

Furthermore, measured values (analog values beside binary

status variables) are read out from the power supplies and

transmitted back the same way.

In the last years, several PLCs were integrated into the

system. These approximately 15 systems are interfaced via

profibus and accessible like any other device from the con-

trol system.

EVENT MANAGEMENT
Like already mentioned, direct read and write operations

to the database are achieved by accessing the appropriate

section in shared memory. The event management comes

into place when other applications need to react in case of a

changed parameter. At the first level, an asynchronous no-

tification system is implemented (see Fig. 3). Applications

with interest in a particular parameter get signaled by a cus-

tom unix signal after the data got written to the database.

The informed application is now in charge of reading the

changed value itself and react accordingly. Following this

approach an automatic load balancing is done (multiple ap-

plications running on multiple CPU cores). The only bot-

tleneck could be the mutually exclusive access to the shared

memory.

THPEA002 Proceedings of IPAC2013, Shanghai, China

ISBN 978-3-95450-122-9

3150C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems



asynchronous synchronous

database

application

other
application

psdistributor

csnotify

other
application

network connection
to process layer

signal

socket
database read/write

1

3

2

Figure 3: Exemplary event processing triggered by

changed parameter. First the new parameter value gets

written to the shared memory (1), afterwards all applica-

tions are notified by a signal (2). The applications read the

new parameter from the database themselves (3).

Benchmarks showed up a raw1 read/write rate of approx-

imately 300 k ops/s using a single application. Almost the

same rate is achieved when multiple applications are ac-

cessing the database. During normal operation — typically

3 k to 4 k ops/s — this is no limitation to the performance

of the overall system. Taking network latency into account

(because parameter values need to be transferred to accord-

ing process hosts via ethernet), the maximum write rate (of

a single process on the control host) reduces to approxi-

mately 500 ops/s. The same limitation is valid while trans-

ferring measured values from the process hosts back to the

control hosts. This rate is too low for realtime measure-

ment. Therefore, the measured values get stored into pa-

rameter vectors2 and transferred at a much lower rate.

The mentioned asynchronous notification system is sup-

plemented by a synchronous one. One core application,

csnotify, is attached to the asynchronous notifications and

gets informed on parameter updates. This way, the appli-

cation can re-distribute the notification to all processes at-

tached to the synchronous notification system. It is used

by applications whose execution cannot be interrupted by

signals.

Logging and Monitoring
Any process host and all attached applications are capa-

ble of sending messages with seven different logging levels

ranging from debug to emergency via network to a central

logger daemon, e.g. in case of failures. Reports in form

of textual messages are generated and visualized within a

graphical error-logger application.

1Measured with a parameter not defined on any process system, which

otherwise would decrease the write rate due to network latency.
2The control system does not distinguish between single-value param-

eters and vector ones. A vector is simply a parameter with multiple or-

dered values.

SOFTWARE INTERFACES OF THE
CONTROL SYSTEM

Any beam diagnostics relies on an interface to process

the data. At this point, several interfaces to the control sys-

tems database come into place. Automated diagnostics are

mainly outsourced to dedicated C or C++ applications using

the native libraries shipped with the control system. An ex-

ample for that is the automated real time measurement of

the beam emittance using synchrotron radiation monitors in

the stretcher ring. Profile images of the beam are captured

and analyzed on a process host. The beam width is trans-

fered to the control host on which the emittance calculation

takes place.

Furthermore, beam diagnostics can be easily done with

very high level programming languages. Therefore, an in-

terface to MATLAB has been created. This allows quick

read and write access to any single parameter value or even

vectors. Due to its matrix manipulation capabilities, it is

a convenient tool to perform beam optics calculations. An

example for this is the automated measurement of the optic

functions in the external beamline.

Apart from the menu system, graphical tools can be de-

veloped using the well known TCL/TK interface. This of-

fers a quick way to develop new standalone (independent

from the main menu system) graphical applications with

access to the control system.

EPICS based solutions can also be integrated into the

existing control system. To that end, a two-way gateway

interface between EPICS and the control system was set up

on one process host.

Applications not running on any control host or process

host can interact with the database, too. Using a single TCP

connection, the whole parameter database can be accessed.

Even attachment to the notification system is possible. To-

gether with an Android port of the menu system running

on mobile devices this interface can be used to steer the

accelerator from almost everywhere in the world.

REFERENCES
[1] W. Hillert, “The Bonn Electron Stretcher Accelerator ELSA:

Past & Future”, EPJ A s01 (2006) 139.

[2] T. Götz, “Entwicklung und Inbetriebnahme eines verteil-

ten Rechnerkontrollsystems zur Steuerung der Elektronen-

Stretcher-Anlage ELSA, unter besonderer Berücksichtigung

der Anforderungen des Nachbeschleunigungsbetriebes bis

3.5 GeV”, PhD theses, University of Bonn, 1995

[3] M. Picard, “Entwurf, Entwicklung und Inbetriebnahme

eines verteilten Rechnerkontrollsystems für die Elektronen-

Stretcher-Anlage ELSA, unter besonderer Berücksichtigung

der Extraktion im Nachbeschleunigungsbetrieb bis 3.5 GeV”,

PhD theses, University of Bonn, 1995

[4] C. Wermelskirchen, “Das Kontroll- und Steuersystem der

Bonner 3.5 GeV Elektronen-Stretcheranlage ELSA”, PhD

theses, University of Bonn, 1988

Proceedings of IPAC2013, Shanghai, China THPEA002

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

ISBN 978-3-95450-122-9

3151 C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)


