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Abstract

In photoinjector design, there is growing interest in using
multi-objective beam dynamics optimization to minimize
the final transverse emittances and to maximize the final
peak current of the beam. Most previous studies in this
area were based on genetic algorithms. Recent progress
in optimization suggests that the differential evolution al-
gorithm could perform better in comparison to the ge-
netic algorithm. In this paper, we propose a new parallel
multi-objective optimizer based on the differential evolu-
tion algorithm for photoinjector beam dynamics optimiza-
tion. We will discuss the numerical algorithm and some
benchmark examples. This algorithm has the potential to
significantly reduce the computation time required to reach
the optimal Pareto solution.

INTRODUCTION
The photoinjector is a key component in the accelera-

tor beam delivery system of next generation light sources
by generating a high brightness electron beam into the ac-
celerator. The goal of the photoinjector beam dynamics
design is to achieve a high peak current while maintaining
low transverse emittances at the same time. This requires
optimizing a number of physical control parameters such
as accelerating RF cavity amplitudes and phases, focusing
solenoid strength and locations, and initial distribution of
the electron beam. In previous studies, multi-objective op-
timization based on genetic algorithms has been used in the
photoinjector beam dynamics optimization [1, 2, 3]. In this
paper, we propose a new algorithm based on the differen-
tial evolution method for multi-objective beam dynamics
optimization.

The differential evolution algorithm is a relatively new
method in evolutionary algorithms [4]. It is a simple
but powerful population-based, stochastic, direct-search
algorithm with self-adaptive step size to generate next-
generation offspring for global optimization. In a number
of comparison studies, it has been shown to be more ef-
ficient than simulated annealing method, controlled tran-
som search, evolutionary programming, and genetic algo-
rithms [4, 5, 6]. It has been successfully used in a variety
of applications and demonstrated its effectiveness [7, 8, 9].
Most of those algorithms are based on a fixed population
size during the evolution. In this paper, we propose a par-
allel multi-objective differential evolution algorithm based
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on varying population size with external storage during the
evolution.

DIFFERENTIAL EVOLUTION METHOD
In the differential evolution algorithm, a population with

size NP in control parameter space is randomly generated
at the beginning. This population is taken as the first gen-
eration of the control parameters. A new generation of the
control parameter population is generated as follows: For
each parameter vector xi,G, i = 0, 1, 2, · · · , NP − 1 in a
population of size NP at generation G, a perturbed vector
vi is generated according to

vi = xi,G+FCR (xb,G−xi,G)+Fxc (xr1,G−xr2,G) (1)

where the integers r1 and r2 are chosen randomly from
the interval [1, NP ] and are different from the running in-
dex i, Fxc is a real scaling factor that controls the ampli-
fication of the differential variation (xr1,G − xr2,G), xb,G

is the best parameter solution in generation G, and where
FCR is a combination weight factor between the original
individual parent and the best parent. In most typical sim-
ulations, Fxc is set to 0.8, and FCR can be chosen from a
uniform random number between 0 and 1 or a fixed input
number. In order to increase the diversity of the param-
eter vectors, crossover between the parameter vector xi,G

and the perturbed vector vi is introduced with an externally
supplied crossover probability Cr to generate a new trial
vector Ui,G+1, i = 0, 1, 2, · · · , NP − 1. For a D dimen-
sional control parameter space, the new trial parameter vec-
tor Ui,G+1, i = 0, 1, 2, · · · , NP − 1 is generated using the
following rule:

Ui,G+1 = (ui1,G+1, ui2,G+1, · · · , uiD,G+1) (2)

uij,G+1 =

{
vij , if randj ≤ CR or j = mbri
xij , otherwise

(3)

where randj is a randomly chosen real number in the in-
terval [0, 1], and the index mbri is a randomly chosen in-
teger in the range [1, D] to ensure that the new trial vector
contains at least one parameter from the perturbed vector.
Next, the new trial solution Ui,G+1 is checked against the
original parent xi,G. If the new trial solution produces a
better objective function value, it will be put into the next
generation (G+1) population. Otherwise, the original par-
ent is kept in the next generation population. The above
procedure is repeated for all NP parents to generate a new
generation of population. This completes one iteration.
Many iterations or generations are used to attain the final
global optimal solution.
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A PARALLEL DIFFERENTIAL
EVOLUTION ALGORITHM FOR

MULTI-OBJECTIVE OPTIMIZATION
The problem of multi-objective function optimization

can be stated in the general mathematical form as:

min

⎧⎨
⎩

f1(x)
· · ·
fn(x)

subject to gi(x) ≤ 0, hi(x) = 0 (4)

Here, f1, · · · , fn are n objective functions to be optimized,
x is a vector of control parameters, and gi and hi are con-
straints to the optimization. The goal of multi-objective op-
timization is to find the Pareto front in the objective func-
tion solution space. The Pareto optimal front is a collection
of all non-dominated solutions in the whole feasible solu-
tion space. Any other solution in the feasible solution space
will be dominated by those solutions on the Pareto optimal
front. In the multi-objective optimization, a solution A is
said to dominate a solution B if all components of A are
at least as good as those of B (with at least one component
strictly better). The solution A is non-dominated if it is not
dominated by any solution within the group. An example
of the Pareto front is shown as the green line within the fea-
sible solution space in Fig. 1 with two objective functions.

Figure 1: Feasible solution space and the Pareto optimal
front in a two-objective function optimization.

The multi-objective differential evolution algorithm with
varying population size in each generation and external
storage can be summarized in the following steps:

• Step 0: Define the minimum parent size, NPmin
and the maximum size, NPmax of the parent popula-
tion. Define the maximum size of the external storage,
NPext.

• Step 1: An initial population of NPini parameter
vectors is chosen randomly to cover the entire solu-
tion space.

• Step 2: Generate the offspring population using the
above differential evolutionary algorithm.

• Step 3: Check the new population against boundary
conditions and constraints.

• Step 4: Combine the new population with the exist-
ing parent population from external storage. Non-
dominated solutions (Ndom) are found from this
group of solutions and min(Ndom,Next) of solu-
tions are put back into external storage. Pruning is
used if Ndom > Next. NP parent solutions are
selected from this group of solutions for next genera-
tion production. If NPmin ≤ Ndom ≤ NPmax,
NP = Ndom. Otherwise, NP = NPmin if
Ndom < NPmin and NP = NPmax if Ndom >
NPmax. The elitism is emphasized through keep-
ing the non-dominated solutions while the diversity is
maintained by penalizing the over-crowded solutions
through pruning.

• Step 5: If the stopping condition is met, stop. Other-
wise, return to Step 2.

The above population based differential evolutionary op-
timization algorithm naturally leads to a multi-processor
parallel implementation. Our method contains two levels
of parallelization. First, the whole population is distributed
among a number of groups of parallel processors. Each
group of processors contains a subset of the whole popu-
lation. Different sets of the sub-population can be tracked
simultaneously. Second, each objective function evaluation
corresponds to an accelerator simulation, for which parallel
codes are available. Here, those objective function values
such as transverse emittances and bunch length will be ex-
tracted from the results of parallel PIC beam dynamics sim-
ulations with a given accelerator lattice and beam parame-
ters. A good scalability of the parallel differential evolution
algorithm has been demonstrated on a Cray XT5 computer
using 100, 000 processors in our previous study [10].

BENCHMARK EXAMPLES
As a test, we benchmarked the numerical solution using

the above algorithm with two problems in reference [11].
The objective functions and the analytical solutions are
given in Table 1. The numerical solutions together with
the analytical solutions are given in Figs. 2 and 3. It is seen
that the numerical solutions and the analytical solutions are
in excellent agreement.
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Figure 2: Pareto optimal front from the numerical solutions
and the analytical solutions for problem ZDT4.
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Figure 3: Pareto optimal front from the numerical solutions
and the analytical solutions for problem ZDT6.

APPLICATION TO A PHOTOINJECTOR
BEAM DYNAMICS OPTIMIZATION

As an application example, we used the above algorithm
together with a particle-in-cell code [12] in a photoinjec-
tor beam dynamics optimization. A schematic plot of the
photoinjector is shown in Fig. 4. It consists of a 187 MHz

Figure 4: A schematic plot of a photoinjector for multi-
objective optimization application.

RF gun, a solenoid, and two 650 MHz boosting cavities.
The objective functions to be optimized are the transverse
rms emittances and the longitudinal rms bunch length that
is directly related to the peak current of the beam. There
are 10 control parameters that are used in the optimiza-
tion. Those are the initial electron beam transverse size
and bunch length, RF gun phase, strength and location of
the solenoid field, starting location of the boosting RF cav-
ity, and amplitudes and phases of the two RF cavities. The
maximum amplitude of the RF field inside the gun is set as
about 19.5 MV/m. The charge of the electron beam is 300
pC. Some optimal solutions of the rm bunch length and the
transverse emittance are shown in Fig. 5. It is seen that a
transverse emittance emittance below 1 mm-mrad can be
achieved with a reasonably short bunch length.
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Figure 5: Optimal rms bunch length and transverse emit-
tance solutions of the photoinjector beam dynamics opti-
mization.

Table 1: Benchmark Problems [11]

variable
problem bounds objective functions

ZDT4 x1 ∈ [0, 1] f1(x) = x1

xi ∈ [−5, 5] f2(x) = g(x)[1−
√

x1/g(x)]
i = 2, · · · , n g(x) = 1 + 10(n− 1)+∑n

i=2
[x2

i − 10cos(4πxi)]
ZDT6 [0, 1] f1(x) = 1− exp(−4x1)sin

6(6πx1)
f2(x) = g(x)[1− (f1(x)/g(x))

2]
g(x) = 1 + 9[(

∑n

i=2
xi)/(n− 1)]0.25
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