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Abstract

The comparison between tracking with thick and thin

lens models for the LHC has been studied. A widely-used

method to generate thin models is based on the TEAPOT

slicing, which, in the original implementation, was limited

to a maximum of four slices. In this paper, an improved

method is presented, which overcomes the limitation in the

number of slices of the original TEAPOT. The performance

is analysed and the impact on numerical simulation of the

dynamic aperture is evaluated, both for the LHC and its

upgrade, HL-LHC.

INTRODUCTION

In computer codes like MAD-X, the accelerator is de-

scribed as a sequence of elements. A detailed sequence will

contain a description of elements with their geometrical di-

mension and their effect on the beam. For particle tracking

the magnet lattice description has to be symplectic. Sym-

plectic lattice descriptions can be obtained by translation to

thin lattice, in which the elements are represented by one or

several multipole slices (see, e.g., Ref. [1]). The use of thin

elements is the easiest example of symplectic integration of

the equations of motion. The simplest approach consists of

using equally spaced kicks, interspersed with drifts. This

is what is done in the case of MAD-X, where the splitting

is obtained by translation of the thick sequence to a thin

sequence using the MAKETHIN module from MAD-X [2].

The field of symplectic integration provides very sophisti-

cated tools to deal with the problem of symplectic tracking

(see, e.g., Ref. [3] for a review and Refs. [4, 5, 6] for ac-

counts on special techniques). It is also worth noting that

for dipoles and quadrupoles it is possible to find symplectic

transformations such that these elements can, in principle,

be kept as thick elements for the tracking. Recently, a study

has been performed to assess the accuracy of the tracking

performed with thin or thick quadrupoles [7].

In this paper the emphasis is put on an extension of the

very elegant slicing algorithm for quadrupoles [8] that has

been originally implemented in the TEAPOT code [9]. The

original implementation was limited to 4 slices, while in

this paper an extension of the algorithm to an arbitrary

number of slices is presented. This has a positive impact

on the number of slices required to achieve a given accu-

racy for the representation of the machine optics, with also

a beneficial effect on the tracking speed.

THICK AND THIN QUADRUPOLES
The transfer matrix for a thick quadrupole in 2 dimen-

sions can be written as

Mq(K,L) =

(
cos

√
KL sin

√
KL√
K

−K sin
√
KL cos

√
KL

)
, (1)

where K is the quadrupole strength and L the full length of

the thick quadrupole.

For the transfer matrix of a thin quadrupole we have

Mth(KL) =

(
1 0

−KL 1

)
=

(
1 0
− 1

f 1

)
, (2)

which can be obtained from Eq. (1), by replacing the matrix

elements with first order Taylor series terms (cosx → 1,

sinx → x).

The thin lens transfer matrix has only one non-trivial ma-

trix element Mth 2,1 = −KL = −1/f , which corresponds

to a kick of x′ = −x/f for a particle travelling at dis-

tance x from the magnet’s axis and f is the focal length

of the lens. A particle travelling parallel to the axis (initial

x′ = 0) is deflected towards the axis which is crossed after

a distance of f from the quadrupole.

SIMPLE AND TEAPOT SLICING
In MAD-X, the MAKETHIN module provides two types

of slicing algorithm, namely SIMPLE and TEAPOT. We first

consider SIMPLE slicing using n equidistant slices, Md be-

ing the matrix of a drift, Ln = L/(2n), and Kn = 2KLn,

then the global transfer matrix is given by

MSIMPLE(n) = [Md (Ln)Mth (Kn)Md (Ln)]
n
, (3)

where each slice has a thin lens quadruple of strength Kn

sandwiched between drift spaces of length Ln.

We now compare the first terms of the Taylor expansion

of this product with that of the (2, 1) matrix element of the

thick quadrupole

Mq(K,L)2,1 = −KL

(
1− KL2

6
+ · · ·

)
, (4)

MSIMPLE(n)2,1 = −KL×[
1− KL2

6

(
1− 1

n2

)
+ · · ·

]
(5)

and note that the two expressions differ in the second term.

We will now show that it it possible to reproduce exactly

the second term of Eq. (4) by modifying the slice positions

to what will be referred to as TEAPOT slicing [9], which is

illustrated in Fig. 1 and also defines the symbols used in this
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paper. Indeed, this algorithm is an extension of the origi-

nal TEAPOT slicing. Positions and distances are expressed

in units of the length L of the thick quadrupole. Δ is the

distance between slices and δ the distance of the first and

last slice to the edge of the magnet.

For a given number of slices n, it is sufficient to specify

the distance δ at the edge. The equal distances between the

central slices can be obtained from the sum which must be

1 in units of L according to

2δ + (n− 1)Δ = 1 . (6)

Fig. 1 also shows as dashed lines the case of simple equidis-

tant positions, where Δ = 2δ. The global transfer matrix

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

n = 2

n = 3

n = 4

n = 5

i = 1 i = 2 i = 3

Slice position

Δ

δ

Figure 1: Illustration of TEAPOT-style (solid lenses) and

SIMPLE-style (dashed) slice positions for 2 ≤ n ≤ 5 slices.

The origin is at the centre of the thick magnet, and ±0.5
corresponds to the left and right edge of the thick magnet.

Δ is the distance between the central slices and δ the dis-

tance of the first and last slice to the edge of the magnet.

with TEAPOT slicing can be written as

MTEAPOT(K,L, n, δ) =Md(Lδ)×
[Mth (Kn) Md (LΔ)]

(n−1)
Mth (Kn)Md (Lδ) .

(7)

It starts with a drift of length δ, followed by n−1 thin quads

spaced by Δ, and ends with a last thin slice at distance δ
from the end. The Taylor expansion of the (2, 1) matrix

element is

MTEAPOT(K,L, n, δ)2,1 = −KL×[
1− KL2

6

(
1 +

1

n

)
(1− 2δ) + · · ·

]
.

(8)

Choosing

δ =
1

2

1

1 + n
, (9)

allows reproducing the thick quadrupole expression given

in Eq. (4). A comparison of SIMPLE and TEAPOT slicing

with numerical values for δ,Δ is given in Table 1.

Table 1: Comparison of distances used in TEAPOT and

SIMPLE slicing

n δ Δ TEAPOT Δ SIMPLE

2 1/6 n/3 = 0.6̄ 1/n = 0.5
3 1/8 n/8 = 0.375 1/n = 0.3̄
4 1/10 n/15 = 0.26̄ 1/n = 0.25
m 1/[2(1 +m)] m/(m2 − 1) 1/m

The aim of the TEAPOT algorithm is to improve the con-

vergence of the (2, 1) matrix element towards the true so-

lution given by the thick quadrupole. It is also possible

to show that such an algorithm has a beneficial impact on

the convergence of the other two independent elements,

namely (1, 1) and (1, 2). In both cases the converge rate

is quadratic in n and a plot is given in Fig. 2.

It is worth mentioning that even if the computations re-

ported here are based on the use of focusing quadrupoles

the conclusions holds true in general.

Figure 2: Convergence of the matrix elements

MTEAPOT(K,L, n, δ)1,1, MTEAPOT(K,L, n, δ)1,2 towards

the thick quadrupole values.

RESULTS FOR THE LHC
The first test of the proposed algorithm has been per-

formed by using the standard LHC lattice, which rep-

resents a realistic and complex benchmark. As already

shown in Ref. [7] the approach consists of slicing the main

quadrupoles in the arcs and evaluating the resulting β-

beating. The plot is shown in Fig. 3, where the depen-

dence of the β-beating for both slicing methods is shown

as a function of the number of slices. The much better per-

formance of the TEAPOT method is clearly seen, featuring

a β-beating two orders of magnitude smaller for the same

number of slices than that of SIMPLE, even if the slope of

the two curves is essentially the same.

It is worth noting that for HL-LHC squeezed optics [10]

the improvement is over one order of magnitude when 16
TEAPOT slices are used, reducing the β-beating when the

thin optics is not re-matched to 4% (6%) for the case of

β∗ = 15 cm (10 cm).
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The ultimate test is, however, the computation of the dy-

namic aperture (DA) for the various configurations. Here,

the original study presented in Ref. [7], where the DA com-

parison between different types of slicing was performed,

has been pursued. The good agreement found for injection

optics has been verified for more stringent conditions, such

as those provided by the collision optics with two insertions

sqeezed to β∗ = 55 cm.

Figure 3: β-beating in the LHC ring as a result of TEAPOT

or SIMPLE slicing of the arc main quadrupoles.

The initial conditions for tracking are distributed uni-

formly over phase space angles, with 30 pairs over 2σ am-

plitude range. The maximum number of turns is 105 and

the momentum off-set is 0.27×10−3, corresponding to 3/4

of the bucket height. For each of the three lattice mod-

els considered, i.e., nominal model with thin quadrupoles

(11 phase space angles), model with all quadrupoles thick

(59 phase space angles), model with thin main quadrupoles

and thick insertion quadrupoles (59 phase space angles),

the full set of magnetic field imperfections for all magnet

classes have been assigned. Sixty realisation of magnetic

field errors are considered. The results are plotted in Fig. 4.

Overall, there is a good agreement, at least within the

error bars, between the DA values for the three models.

The agreement improves for small and large values of the

phase space angles, corresponding to mainly horizontal, re-

spectively vertical, motion. On the other hand, around 45◦,

when the motion is intrinsically 4D, the agreement gets

worse. In this respect the possibility of having better slicing

algorithm implies improving the tracking accuracy, without

having to move to thick tracking, which is extremely heavy

in terms of CPU-time. One should also stress that such an

agreement is certainly worse than for the case of the injec-

tion optics.

CONCLUSIONS AND OUTLOOK
The extended TEAPOT algorithm proved to have an ex-

cellent performance, reproducing the machine optics with a

relatively small number of slices. It has been implemented

in the MAKETHIN module of MAD-X [11], thus improving

the efficiency of tracking studies. The difference between

thick and thin lens tracking might be non-negligible for

pushed optics configurations, such as the squeezed optics

for a collider. In this respect an efficient slicing algorithm

will be a true advantage.

New options will also be implemented, such as the ca-

pability of leaving classes of quadrupoles thick after slic-

ing, i.e., represented by a sequence of kicks, used to assign

multipolar errors, and thick quadrupoles instead of drifts as

currently done. These changes will be coupled to the possi-

bility of performing tracking using thick quadrupoles, thus

expanding the spectrum of possible applications.

Figure 4: DA as a function of phase space angle for the

three lattice models considered in this paper. The error

bars refer to the minimum and maximum DA value over

the sixty realisations used.
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