
AN IDE FOR SPIN-ORBIT DYNAMICS SIMULATION

A. Ivanov∗, N. Kulabukhova, St. Petersburg State University, Russia

Abstract

In this paper a prototype of an IDE for simulation of

spin-orbit motion is described. It is based on the compo-

nent software development and provides a flexible graphic

user interface. One of the main parts of it is numerical

methods for ordinary differential equations integration. For

numerical simulation it is possible use either the matrix

map algorithm or traditional step-by-step methods. This

workflow allows choosing one of numerical algorithms and

to provide necessary computational experiments. It is also

contains both a visual designer of an accelerator lattice

and additional tools for control parameters of the model.

There is also exists possibility for code generation in dif-

ferent programming languages and computation on high-

performance systems.

INTRODUCTION
The key idea of the research is to develop an IDE (Inte-

grated Development Environment) for beam dynamics sim-

ulation and accelerator designing. This program have to

compute the dispersion and betatron functions, etc., and

also provide tracking of spin-orbit motion of particles. In

the linear case transfer matrices are used. For the non-

linear dynamics matrix integration [1] (up to the necessary

order) and step-by-step integration [2] are applied. In both

cases symplectification is available.

The appointment of any IDE is to facilitate the process

of programming and to unify access for different tools. So

the main requirements for an IDE for beam dynamics in-

vestigation are the following

• syntax highlighting and intelli-sense;

• grafical tools for designing;

• workflow for model description;

• code generation possibility.

The last one means both converters to well known beam

dynamics simulation codes (MAD, OptiM, COSY Infinity)

and ability to generate codes for general-purpose mathe-

matical packages (e.g. Matlab, Mathematica, Maple) and

programming languages (C++, Fortran, etc.).

The prototype of the IDE was developed on the .NET

framework and permits only Windows operation system.

To achieve the cross-platform feature in release version the

Qt framework will be used. It will lead us to an environ-

ment that can be run in wide range of different platforms

with a single interface.

∗05x.andrey@gmail.com

IDE DESCRIPTION
The key for understanding how this IDE works is imag-

ining the process of an accelerator designing and tracking.

The main concept of it is project, that means a collection of

files. It includes lattice description, settings (characteristics

of the particle and energy) and code behind. After a project

will built in the solution folder output files will be gener-

ated and researcher will achieve possibility to simulation in

the model. Such architecture is commonly used in IDE and

helps to organize a project in convenient and scalable form.

For errors tracking the special output stream is used. The

researcher can obtain detailed information to understand

why something does not work. The errors are displayed

interactively in special window.

Solution explorer
The window represents project files in a tree view. The

start-up file are indicated by bold font. For instance, a re-

searcher can create several lattices and sorage them within

one project. In pre-build activity it is necessary to indicate,

which one must be used. The Solution Explorer window al-

lows all standart activities, such as copy, rename and delete

files.

Workspace
The workspace of the IDE is a tab control. Files with dif-

ferent extensions are presented as a tab with corresponded

editable area. For code behind it is a text editor or visual

designer. Each tab can be saved and closed. There is also

indicator ”star” near the modified files.

Figure 1: Text editor for code behind.

Code behind
For code writting a text box with syntax highlighting and

intelli-sense is used (see Fig. 1).

In code researcher can use all standart matheatical oper-

ators and functions, and instructions if, else, for. One can

define own functions and use it. But for logic implementa-

tion it is necessary to define two functions:

Proceedings of IPAC2013, Shanghai, China MOPWO019

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques

ISBN 978-3-95450-122-9

921 C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)



Figure 2: Visual lattice designer and code behind.

• Create function for lattice description;

• OnElementCompleted describes the activity that will

performed after each element during the simulation

process;

• OnTurnCompleted describes the activity that will per-

formed after each turn during the simulation process.

Visual designer
Visual designer (see Fig. 2) is a tool that exist in al-

most any IDE (e.g. Qt Creator, Visual Studio). It allows

to bind code and visual lattice description. The researcher

can change optics via Properties window and this changes

will reflect into the code authomatically. In visual mode

drag and drop events can be also used for optics develop-

ment. Visual designer and code editor provide a powerful

tool for lattice description. Flexible parameter settings in

code behind can realize sophisticated logic. While visual-

ization help us to check and verify it.

Workflow
The programming language that is used in code behind

is quit simple. It uses C-like syntax with dynamic typiza-

tion. It means that you can declare variables in any place

and of any type. All operations will be checked during

project building. To create a lense one must only call func-

tion with the necessery parameter list. In program code the

researcher can specify the activity that must bu done during

the simulation after each element is tracked. For example,

one can introduce random errors for field distribution or run

an additional effect.

Nevertheless one can create model and describe lattice

without any code writing. For this purposes a workflow

can be used. This mechanism is similar to such visual pro-

gramming systems as LabVIEW or MATLAB/Simulink.

In the workflow the researcher describes the experiment

model in visual schemes. Then different computational

methods and models can be used for a particular step. For

instance, for a researcher there is no difference in using

step-by-step integration methods or other approaches, he

only indicates the desired one. The workflow will choose

the actual solver and appropriate computing resources.

Figure 3 shows a schematic view of the developed work-

flow. A number of components are mentioned on this fig-

ure:

• Lattice designer allows constructing a lattice via pre-

defined elements by settings their physical parame-

ters. It consists of a text editor and GUI with drag and

drop capability. In Figure 3 the green circle represents

the lattice designer.

• Fringe Fields module generates fringe fields near the

selected elements. The user can choose different mod-

els of field distribution, e.g. linear or Enge functions.

• Particle Description element defines the kind of parti-

cle and its properties used for modeling.

• Solvers process the accelerator declaration and parti-

cle data. This is the most resource consuming step

which is executed on distributed computing resources.

• Code generation module provides tool for generation

computational code in different languages for using in

such packages as MATLAB or Mathematica.

Figure 3: Workflow interface.

The key functionality of the IDE in beam dynamics is

to provide a high-level environment for accelerator design,

simulation and analysis. Implementation issues are hid-

den from the users. If the selected method needs symbolic

calculations or Taylor series expansion, they will process

without direct user activity. On the other hand all informa-

tion and model descriptions are available. So the researcher

can be sure what exactly he calculates and how to interpre-

tate the results.

MOPWO019 Proceedings of IPAC2013, Shanghai, China

ISBN 978-3-95450-122-9

922C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques



Code generation
The main approach that is used for simulation is a nu-

merical implementation of matrix formalism [3]. This

method allows to represent an element of accelerator lat-

tice by a set of the numerical matrices

X = R1X0 +R2X
[2]
0 +R3X

[3]
0 . . . ,

where X is a state vector of particlle description. Note

that the linear part R1 is transfer matrix exactly, and matrix

Rk is related to the non-linearities of order k. Moreover,

it is possible to compute such accelerator parameter as the

dispersion and betatron functions based on this matrix map

elements.

The researcher can directly run simulation in IDE, vi-

sualize the result or save data. Alternatively in order to

achieve the increase of performance one can generate com-

putational code in different program languages (e.g. see

Fig. 4):

• C++ (with OpenMP);

• MATLAB (with Parallel Computing Toolbox);

• Fortran;

• .NET Framework languages (with Parallel Extension).

Figure 4: Matlab output file.

High-performance module
The IDE provides an abstract declaration of an acceler-

ator machine and numerical methods that used for simula-

tion. In matrix integration mode it is possible to run the

task in a parallel system. The most natural approach in this

case is GPU calculation [4]. But the computatonal task can

be also run in multiprocessor systems.

This can be difficult for researcher to write a parallel pro-

gram where memory locality is crucial to performance or

where the programmable parts of GPUs have had limited

support for primitive types typically found on well known

languages. So a low-level library is integrated to the IDE.

It provides unified access to such technologies as OpenCL,

CUDA, OpenMP, MPI, without code writing.

CONCLUSION
It must be emphasized that the proposed IDE is a model-

ing environment and is not directly related to the real accel-

erator control systems. However, the organization of com-

munications between such systems is possible [5].

The task of running diverse software packages (MAD,

COSY Infinity, etc.) that have different requirements for

the installed operating systems, libraries and other depen-

dencies can be simplified by using the technology of cloud

computing. In this case, the virtual machine images ready

to set up and configured simulation package can be de-

ployed on provided computing resources. In addition, the

use of Cloud enables the experiment in case of lack of lo-

cal computing resources, as well as in the mode of ”urgent

computing”, when it is necessary to get the results to a pre-

set time.

ACKNOWLEDGMENT
The authors would like to thank Yurij Senichev and

Serge Andrianov for continues discussion on mathematical

modeling and critical verification of software implementa-

tion. Also thanks to Vladimir Korkhov for software archi-

tecture discussion.

REFERENCES
[1] A. Ivanov, S. Andrianov, “Matrix Formalism for long-term

evolution of charged particle and spin dynamics in electro-

static fields,” Proceedings of ICAP2012, Rostock, Germany,

2012. P.187-189.

[2] W. Oevel, M. Sofroniou, “Symplectic Runge-Kutta

schemes II: classification of symmetric methods,”

http://citeseerx.ist.psu.edu/viewdoc/summary?

doi=10.1.1.46.5060

[3] A. Ivanov, “Comparison of Matrix Formalism ans step-by-

step integration for the long-term dynamics simulation in

electrostatic fields,” Proceedings of RuPAC2012, St. Peters-

burg, Russia, 2012. P.370-372.

[4] N.V. Kulabukhova, “GPGPU Implementation of Matrix For-

malism for Beam Dynamics Simulation,” Proceedings of

ICAP2012, Rostock, Germany, 2012. P.59-61.

[5] N.V. Kulabukhova, A.N. Ivanov, V.V. Korkhov, D.A.

Vasyunin, S.N. Andrianov, “Virtual accelerator: grid-

oriented software for beam accelerator control system,” Book

of abstracts of the 5th International Conference on Dis-

tributed Computing and Grid Technologies in Science and

Education, 2012.

Proceedings of IPAC2013, Shanghai, China MOPWO019

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques

ISBN 978-3-95450-122-9

923 C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)


