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Abstract

Parametric studies of geometric variations are an essen-

tial part of the performance optimization and error estima-

tion in the design of accelerator cavities. Using common

eigenmode solvers the analysis of intentional and undesired

geometric perturbations tend to be very extensive since any

geometric variation involves an entire eigenmode recom-

putation. Perturbative methods constitute an efficient al-

ternative for the computation of a multitude of moderately

varying geometries. They require a common eigenmode

computation of solely one (so called unperturbed) geom-

etry and allow for deriving the eigenmodes of similar but

modified (so called perturbed) geometries from these un-

perturbed eigenmodes. In [1], [2] the practicability of per-

turbative methods was proven by means of simple cavity

geometries.

In this paper we investigate the applicability and effi-

ciency for practice-oriented cavities. For this, basic geo-

metric parameters of elliptical cavities are varied and the

respective eigenmodes are computed by using perturbative

as well as common methods. The accuracy of the results

and the computational effort of the different methods are

compared.

INTRODUCTION

Perturbative methods (PM) take advantage of the fact

that the eigenmodes of a cavity form a system of mutu-

ally orthogonal functions. This entails that the modes of

one (unperturbed) cavity can be used to expand the modes

of another (perturbed) cavity presupposed that the unper-

turbed cavity shape completely includes the perturbed one.

To determine the weighting factors for such a series ex-

pansion the mutual interactions of the known unperturbed

eigenmodes inside the volume ΔV (volume that is re-

moved from the unperturbed volume by the perturbation)

have to be computed. The interaction of two modes is com-

posed of integrals of the scalar products of their electric and

magnetic fields respectively over the volume ΔV .

Currently, we use two different perturbative methods, a

generalization of Slater’s theorem (GST) [3] and a self-

developed method [2]. The methods differ in the compo-

sition of interaction terms. In the following the results of

GST are discussed.
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SIMULATIONS
For the unperturbed cavity a single elliptical cell ac-

cording to Cornell’s 7-cell SRF cavity design was chosen.

Cylindrically symmetric perturbations were applied to it

presenting typical modifications of a cavity optimization

process (see fig. 1). A variation of the cell diameter was

done by reducing the equator radius by 1%, 5% and 10%.

The cell width was modified by simultaneously decreasing

the longitudinal equator half axis and increasing the longi-

tudinal iris half axis by 5% and 10%.

The unperturbed eigenmodes were simulated with the

eigenmode solver of CST Microwave Studio 2012 (CST

MWS) [5] using a tetrahedral mesh with curved elements.

620 modes in the range of 1.3 to 19.2 GHz were computed

by using transversal (Htang = 0) and longitudinal (Etang = 0)

symmetry planes. The simulated modes were exported as

discrete values from CST MWS and all further computa-

tions were done in Wolfram Mathematica 8.0 [6].

The volume integrals forming the interactions of unper-

turbed modes significantly determine the accuracy of the

perturbed results. The integration over ΔV is done as a

summation of discrete values since a continuous integration

turned out to be too expensive [4]. However, the volume

ΔV cannot be adequately discretized by commonly used

voxel elements since ΔV is mainly located in the curved

boundary region of the cavity. Furthermore, the discrete

field values may have zero values if their coordinates are

located close to or outside the boundary. For this reason,

a special algorithm is used for the volume partitioning [4]

that precisely computes volume and center point of the el-

ements (see fig. 1) thus allowing for accurate computation

of the interactions terms.

To verify the results comparative eigenmode computa-

tions of the investigated perturbed cavity shapes were car-

ried out with CST MWS.

Figure 1: Shape of Cornell cell with perturbed diameter

(left) and width (right). Partitioning of ΔV into discrete

elements with centered coordinates for field allocation.
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RESULTS
The perturbative method yields accurate results for the

frequency fPer of the perturbed modes over wide frequency

range. Regarding all investigated perturbations, the relative

error of fPer between 1.24 and 12.25 GHz is smaller than

6.7 · 10−3. The majority of frequencies deviates even less

from the comparative results as fig. 2 shows. For instance,

the mean relative error (MRE) for a 10% cell width pertur-

bation is only 1.6 · 10−3. For a 1% cell diameter perturba-

tion fPer can be computed up to 14.25 GHz with a MRE of

3.9 · 10−3.

The PM based fields of lower order modes coincide very

well with the comparative simulation like fig. 3 shows for

the accelerating π mode. By increasing frequency the de-

viations also start to increase. But the fundamental field

patterns are maintained even for high frequencies and large

perturbations as fig. 4 and particularly fig. 5 illustrate.

It turned out that the size of volume elements neces-

sary to accurately compute the discrete volume integrals

is mainly determined by the unperturbed mode with the

shortest wavelength λmin. The dimension of the perturbed

volume part ΔV has only little impact. For the used 620

modes (λmin = 1.56 cm) the integrals converge at a step

size of 1.25 mm. Depending on the investigated perturba-

tion this corresponds to 12,000 to 40,000 elements.

Using all simulated unperturbed modes, a number of

400 to 550 modes was needed to reach convergence of

the results. It became apparent that only certain kind of

modes actually interact with each other and affect the re-

sults. This arises from the fact that only cylindrically

symmetric perturbations were investigated which entails

that only modes with the same azimuthal dependency (e.g.

monopole modes) interact inside ΔV . Splitting the com-

plete mode set into respective subsets, only about 50 modes

are necessary to reach an identical accuracy (fig. 6). Fur-

thermore, the mode number depends on the dimensions of

the perturbation. This means that the smaller the perturba-

tion is the shorter has to be the minimal wavelength λmin

of the unperturbed modes to accurately expand a perturbed

Figure 2: Relative error of fPer of about 170 modes for 5%
cell diameter (MRE: 2.9 · 10−3) and 10% width perturba-

tion (MRE: 1.6 · 10−3).

mode in terms of the unperturbed ones. Like previously

mentioned, the results for a 1% cell diameter reduction are

less accurate than the other results. Inspecting the conver-

gence behavior proved that the use of further unperturbed

modes may improve the accuracy.

The simulation of unperturbed modes is the most time

consuming part of the PM implementation. Simulating

100 modes with a very high accuracy takes about three

hours computational time (CST MWS, CPU: 2×3.30 GHz,

RAM: 256 GB). Considering only a single perturbation this

would involve a high effort. But considering a multitude of

Figure 3: Perturbed field of the accelerating mode for 10%
cell width reduction (y = z = 0 m).

Figure 4: Longitudinal electric field of two higher order

modes with fPer = 8.94 GHz at 10% width reduction (top)

and fPer = 8.69 GHz at 5% diameter reduction (bottom).
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Figure 5: Comparison of field of perturbed mode with fPer = 8.94 GHz in the cross cut (z = 0 m) and longitudinal cut

(y = 0 m) of the cell (10% width perturbation ). The unperturbed and perturbed cavity shapes are shown as gray curves.

perturbations (like it is common for parameter studies), this

is a comparatively low effort since the unperturbed modes

have to be computed only once. The computation of dis-

crete volume integrals for a set of 50 modes takes between

50 s and 120 s (12,000 to 40,000 elements) while the fi-

nal determination of the perturbed frequencies and series

expansion factors lies in the range of some seconds (Math-

ematica, CPU: 2 × 2.66 GHz, RAM: 20 GB). Thus, the

execution of perturbative methods algorithms is highly ef-

ficient.

Figure 6: Change of perturbed frequencies fPer depending

on number of unperturbed modes. fPer converge faster us-

ing a subset of interacting modes (solid lines) instead of the

entire mode set (dashed lines).

CONCLUSIONS
Perturbative methods could be applied successfully to el-

liptical single cell cavities by investigating different forms

of minor and moderate perturbations. The frequency as

well as the field of perturbed modes can precisely be com-

puted over a wide frequency range. Once the modes of the

unperturbed cavity are simulated, the perturbative methods

can be executed with a very low effort. Splitting the unper-

turbed modes into subsets of interacting modes (depending

on symmetries of the cavity geometry and the perturbation)

may further reduce the computational time since the effort

quadratically scales with the number of used modes.
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