
FPGA DEVELOPMENT APPROACH FOR ACCELERATOR SYSTEMS

WITH HIGH INTEGRATION COMPLEXITY

J. Dedic, K. Zagar, COBIK, Solkan, Slovenia∗

A. Söderqvist, N. Claesson, R. Tavcar, Cosylab, Ljubljana, Slovenia

J. N. Rodrigues, Lund University, Lund, Sweden

Abstract

This paper presents a Field Programmable Gate Array

(FPGA) development workflow for custom hardware as

part of an accelerator control systems. The workflow is

narrowed down to three equally important parts: require-

ments analysis, implementation and testing. Each part is

presented with milestones and guidelines, which addresses

subjects such as knowledge alignment and development

standards. These are presented and have been proven to

increase efficiency and quality of control systems.

INTRODUCTION

The increasing demand for high power and high avail-

ability particle accelerators has put high performance re-

quirements on the control system (CS). With higher speeds

and bigger accelerators the CS grows bigger, up to thou-

sands of distributed nodes, and the requirements on syn-

chronization and security are raised.

Field Programmable Gate Arrays (FPGAs) have become

ubiquitous in CSs for accelerators. An essential part of the

CS is the Timing System (TS), which coordinates the oper-

ation of the devices around an accelerator. The TS can be

seen as the backbone and a service that is delivered to the

CS.

A complete system overview, which means extensive

iteration between all stakeholders, is required before the

development of a TS can be started. Development stan-

dards need to be in place and continuous integration is also

needed.

This paper is divided into four parts. First a generic

workflow is described, later an example of knowledge

alignment is given, followed by some shortly depicted pro-

duction projects. In the end a conclusion is also given. In

total, this is the necessary knowledge needed for efficient

FPGA development for CSs.

WORKFLOW

The FPGA development workflow is divided in to three

parts. Each part is approximated to one third of the total

effort.

Requirement analysis

Before starting implementation of a timing system

preparations to learn the interplay between all the machines

are required. Key steps involved are:

∗ {joze.dedic, klemen.zagar}@cosylab.com

1. Assemble all the nodes around the accelerator that re-

quire real-time timing information.

2. Understand all the nodes’ requirements in accordance

with the physical machinery.

3. Define clean interfaces and functions for all the nodes.

Defining interfaces and functions needs extensive iter-

ation between all stakeholders involved, including physi-

cists, electronics and software developers. Unfortunately,

the implementation process often starts early, with insuffi-

cient knowledge from all three steps. This leads to a sys-

tem where one part is incompatible with another. However,

due to the amount of invested resources all parties tend to

stick with it. It is therefore crucial that all requirements

are collected and an agreement between all stakeholders

is reached before implementation starts. Preparations for

implementation also need to begin during the requirement

analysis.

Knowledge and investigation of current technologies are

necessary. Off-the-shelf products and standard components

that minimizes development effort are preferred. They

shorten development time as well as guarantee availability

for spare parts, making upgrades and repairs easier.

Figure 1: Automated build and verification flow for fast

adaptation to changes in requirements or design.

Implementation

The requirements need to be analyzed before Register

Transfer Logic (RTL) coding starts. Basic and common

functionalities need to be distinguished in order to parti-

tion the design. A proper partitioning leads to a generic

and scalable solution. This means that it fits the need of

all possible variations of the distributed nodes, minimizing

customization effort, a prerequisite to enable small design

changes without breaking the overall structure.

Requirements, even though they have been iterated mul-

tiple times between affected stakeholders, have a tendency

MOPWA088 Proceedings of IPAC2013, Shanghai, China

ISBN 978-3-95450-122-9

876C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

07 Accelerator Technology and Main Systems

T31 Subsystems, Technology and Components, Other



to change, due to the high complexity. For that reason being

able to make design changes quickly during the implemen-

tation is of high importance. Therefore it is important to

set up a build flow, seen in figure (1), for individual com-

ponents, groups of components and the complete system

when RTL coding starts. The build flow is ideally auto-

mated and helps integration and verification.

Elaborating and synthesizing individual components

saves time and can be done continuously to enable quick

adaptation to specific requirements.

While integration of the complete system enforces in-

terface matching, detects compatibility issues and enables

physical estimations. Synthesizing the complete system

gives an amount of used FPGA primitives and area. Im-

plementation matches the netlist from synthesis with phys-

ical constraints constructing a physical model. This model

enables timing and power estimations.

Setting up the build flow requires a version control sys-

tem. It can give access to the latest working and tested

version of a component and enables integration between

different components as early as possible. This together

with the fundamental idea of security and version tracking

makes it necessary to use.

Compatibility between developers is acquired through

standardizing coding styles and introducing naming con-

ventions. Cosylab uses the same as CERN [1] which en-

hances developers readability of code developed elsewhere.

Using a common coding style enables building of a compo-

nent library of reliable and reusable components. Software

tools have been developed in-house for automatic check of

adherence to the agreed conventions. These agreements

minimize trivial mistakes and make it easier to focus on

the important mistakes during peer code review.

Testing

A structured approach is needed for effective and com-

prehensive testing. The unit under test should go through

following test steps:

1. Simple testbench is constructed to verify the core

functionality, few test cases for quick testing.

2. Construct test pattern generator with predictable test

patterns, verifiable at output, to extend test cases.

3. Expand testing hierarchically upwards repeating the

test steps on bigger part of the system.

The testbench is responsible for generating input and

verifies functionality either by using a given golden output

or generating a golden output with a model implementation

in software. A schematic view over testbenches can be seen

in Figure 2 and 3.

The testbench creates various kinds of input, both ex-

pected and unexpected, and validate functionality for a pre-

defined amount of test cases. This enables automatic ex-

tensive testing and validation after design changes. De-

sign changes emerge because of functionality and interface

changes.

Figure 2: Testbench for

complete system.

Figure 3: Testbench for sin-

gle component.

It is necessary to develop a behavioural software model

for larger components, or groups of components, in the

system to verify the hardware implementations functional-

ity. The generated input is applied to both the implemented

hardware module and the behavioural software model and

the design is validated by comparing their outputs.

FPGA ACADEMY

A fundamental difference exists between writing source

code for hardware and writing it for software. Everything

in hardware executes in parallel instead of in sequence,

which means that knowledge about software programming

usually complicates instead of assists.

The FPGA Academy was invented to overcome this

knowledge gap. It is a mean for bringing new develop-

ers quickly to production quality on HDL design. A set of

exercises is provided to ensure that all developers have the

same essential know-how. All necessary steps in the design

flow for FPGAs are undergone, including proper partition-

ing and code readability. The source code is also reviewed

by a senior developer and corrected accordingly.

Early design choices have great impact on important re-

sults such as the area usage and the highest possible fre-

quency. Designing a production system is therefore not

a suitable first assignment. The best choices can only be

made with a lot of practical experience which, for exam-

ple, is gained through working with FPGAs.

Knowing all the tools for FPGA development is also dif-

ficult and merely study them is not enough. To fully un-

derstand what they do and how to use them they have to be

utilized first to some extent.

Since the FPGA Academy forces the developers to use

all the tools and to understand how their code performs it

is a great way for patching developers missing knowledge.

PROJECTS

Cosylab has been involved in multiple big science

projects, such as particle accelerators and sensor arrays.

Many of them require different approaches but usually they

have significant similarities. A solid understanding of how

to realize projects of varying magnitude has been acquired

thanks to several successful collaborations.

The following are three examples of recent projects

where FPGA development has been involved. At Spalla-

tion Neutron Source (SNS) [2] an upgrade was supplied, at

MedAustron [3] and European Spallation Source (ESS) the

complete architecture was designed and implemented.

Proceedings of IPAC2013, Shanghai, China MOPWA088

07 Accelerator Technology and Main Systems

T31 Subsystems, Technology and Components, Other

ISBN 978-3-95450-122-9

877 C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)



Spallation Neutron Source

Cosylab’s contribution to the Spallation Neutron Source

was a redesign of the TS and an upgraded Timing Sys-

tem Master. The current hardware was ageing and spare

parts became scarcer. Calibrating and replacing hardware

was tedious labour, thus the accelerator also had undesired

downtime.

All the requirements from the onsite teams were re-

evaluated to reach an understanding of how to implement

them on the new hardware. Finally the software control

loop algorithms were implemented on the FPGA firmware.

MedAustron

In the MedAustron project Cosylab was involved from

the beginning. It is a medical and experimental facility lo-

cated in Austria. Some key features of its control system

are:

• Possibility to have several virtual accelerators for con-

current testing and commissioning of independent

parts.

• Change beam cycle configuration in soft real-time

without downtime.

• Accurate and flexible event distribution system with

100 nanosecond GPS timestamping capabilities.

To facilitate these features extensive customization of

MRF firmware was required.

European Spallation Source

ESS will be the brightest and most modern neutron

source in the world and will have features which put unique

requirements on the TS. Some key features of ESS TS are:

• Real-time data transmission from the Timing System

Master to the Timing Receivers without affecting the

regular messages that control the equipment in hard

real-time.

• Send heartbeat events with a frequency of 14 Hz and

only initiate sequences directly subsequent the heart-

beat message.

• Enable timestamping for all input and output for post-

mortem analysis.

The Timing System Prototype is based on off-the-shelf

products from MRF with considerable firmware customiza-

tion.

Summary

The CS and hence the TS is often underestimated and do

not get enough attention until most of the other decisions

are made. This results in inappropriate requirements and

more expensive solutions. By developing the CS from the

start there is a stronger possibility that it works as desired.

Valuable lessons and insights have been gained from

each project. Being able to identify the deliverables and

deliver at deadlines and within budget is important since it

reduces costs.

CONCLUSION

This approach makes sure that the Control System is de-

signed as intended. It also ensures that the requirements

are real and not conceived out of nothing. By assuring that

the overall knowledge of the system is known before im-

plementation nothing is under or over specified. This leads

to less time spent on unwanted workarounds and on im-

plementing unnecessary requirements. By defining clear

requirements it is also apparent when the Control System

is ready for use in production.

Following development standards in the hardware team,

acquired from internal training, gives a lot of advantages.

Such as increased mobility and flexibility of the develop-

ers, e.g. moving between projects and sharing code. These

abilities help to utilize the whole team. As soon as a project

wraps up some can start on a new, while the others join

later. It also eases documentation of the system and makes

it easier to add features that are requested at a later stage.

Continuously integrating the system validates the inter-

faces and the current implemented functionality. Signif-

icant indications about the system always emerge during

the integration. All this knowledge will speed up the final

integration when the complete system is set-up. By having

automated tests for all hierarchical levels it is also easy to

verify the system, e.g. after changes in requirements occur

and have been realized.

Cosylab has been and is involved in the construction of

many control systems at multiple accelerators thereof SNS,

MedAustron and ESS. Following this workflow, the best

practices mentioned and by emphasizing the importance

of requirement analysis many projects has been brought to

successful completion.

REFERENCES

[1] P. Loschmidt, N. Simanić, C. Prados, P. Alvarez

and J. Serrano, “Guidelines for VHDL Coding”,

http://www.ohwr.org/projects/hdl-core-lib/

documents, April 2011.

[2] D. Thompson, D. Curry and J. Dedic, “Timing system

update for SNS”, Proceedings of ICALEPCS2009, Kobe,

Japan, 2009.

[3] J. Gutleber, A. Brett, M. Marchhart and J. Dedic, “The

MedAustron accelerator control system”, Proceedings of

ICALEPCS2011, Grenoble, France, 2011.

[4] J. Dedic, M. Plesko, R. Sabjan, I. Verstovsek and K. Zagar,

“Control systems for new large experiments”, Proceedings

of PCaPAC 2010, Saskatoon, Saskatchewan, 2010.

MOPWA088 Proceedings of IPAC2013, Shanghai, China

ISBN 978-3-95450-122-9

878C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

07 Accelerator Technology and Main Systems

T31 Subsystems, Technology and Components, Other


