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Abstract 
Cherenkov radiation is widely used for detection of 

charged particles and can be also applied for particle 
bunch diagnostics. As a rule, dielectric objects applied for 
these goals have complex forms. Therefore development 
of methods of calculation of bunch radiation in presence 
of complex dielectric objects is now of a great interest. 
The approximate method developed by us allows to take 
into account influence of the object boundaries closed to 
the charge trajectory as well as "external" boundaries of 
the object. The case of the charge crossing a dielectric 
plate was considered as a test problem. The exact solution 
of this problem is in a good agreement with our 
approximate solution. Next, the cases of more complex 
objects were analyzed. One of them is a dielectric cone 
with a vacuum channel. Particularly, it was shown that 
radiation can be convergent under certain conditions, that 
is the field outside the cone can be more intensive than on 
the cone boundary. Radiation of the bunch in the case of 
dielectric prism was considered as well.  

BASIS OF THE METHOD 
Problems of radiation of charged particles in the 

presence of dielectric objects are of interest for some 
important applications in accelerator and beam physics 
[1]. It can be mentioned, for example, that a new method 
of bunch diagnostics was offered recently [2]. For 
realization of this method, it is necessary to calculate the 
field of Cherenkov radiation outside a dielectric object 
(such radiation can be named “Cherenkov-transition 
radiation” (CTR)).  

In a number of simple specific cases, an exact solution 
for the field has been obtained [3]. However, in a majority 
of cases of practical interest, the complex geometry of the 
problem does not allow obtaining rigorous expressions for 
the radiation field. Therefore development of approximate 
methods for analyses of radiation is very actual.  

It should be noted that some of problems with dielectric 
objects were considered in series of papers, where certain 
approximate methods were elaborated (see, for example, 
[4-7]). The basic idea of these methods is to find so called 
polarization current using various simplifying 
assumptions. Along with such approach, it is reasonable 
to develop other methods which can be based on the ray 
optics laws. They can afford opportunities for analysis of 

problems with objects having complex shape without any 
restriction on refraction index.  

We have offered the method based on combination of 
exact solution of problem without “external” boundaries 
of the object and on accounting of these boundaries using 
the ray optics [8]. This method concerns problems that are 
characterized by the following large geometric parameter: 
the object size is much larger than wavelengths under 
consideration. It should be emphasized that the other 
geometric parameters (such as the distance from the 
object’s border to the charge trajectory) can be arbitrary.  

Under such conditions, the following approach can be 
applied [8]. At first, the field of the charge in an infinite 
medium without “external” borders is calculated. The 
second step is the approximate calculation of the radiation 
going out of the object. (This calculation is related to 
Fock’s method for analyzing reflection of waves from an 
arbitrary surface [9]; analogous calculations are applied to 
elaborate different optical systems [10].) At the second 
step, the incident field is multiplied by the Fresnel 
transmission coefficient, and then propagation of 
radiation is calculated using the ray optics technique. 
Thus, the first of the refracted rays is obtained. Probably, 
this ray will be satisfactory for the majority of applied 
problems. If necessary, multiple reflections and 
refractions from the object’s borders can be also taken 
into account.  

For testing the method, we used the problem about the 
field of point charge flying through the dielectric layer 
with the thickness d  and permittivity ε . Such a problem 
has exact solution [3]. We compared computations 
performed with use of exact formulas and approximate 
ones [8]. In the case when 10 dd λ≥  (where dλ  is a 
wavelength in dielectric), the obtained approximate 
solution is in a very good agreement with exact one. This 
result is very encouraging, and it stimulates applying the 
method under consideration for more complex object 
where the exact solution cannot be obtained.  

APPROXIMATE SOLUTIONS                  
FOR  CONE AND PRISM 

We applied the method under consideration to three 
cases. In two cases we assume that the dielectric objects 
have a vacuum channel with a radius a , and the charge 
moves along the axis of the channel ( z -axis). One of 
these objects is a cone [8] and the other is a prism (the 
channel is situated in the middle, see Fig.1). In the third 
case, the charge moves along the prism at distance a
from one of boundaries (the “lower” part of the object is 
absent in Fig.1). For short, the prism with the charge in 
the channel will be called the “prism-I”, and the prism 
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with the charge moving along the boundary will be called 
the “prism-II”.  

The permittivity and permeability of the object material 
are ε  and μ , respectively. The channel and the region 
outside the object are vacuum. A point charge moves 
along the z -axis. The value a  can be both smaller and 
larger than the typical wavelengths. It is also assumed that 
the Cherenkov radiation travels the distance in the 
dielectric which is much longer than the wavelength 
under consideration. 

Figure 1: The section of the cone or prism for different 
ray dispositions; , 0i tθ >  for (a) and (b), and , 0i tθ < for 
(c). The “prism-I” has the “lower” part, but the “prism-II” 
doesn’t have this part.  

Note that, in the case of the prism, Fig. 1 shows the 
section which is orthogonal to the prism surfaces. We will 
consider the field in this plane only, because the 
transmitted radiation is maximum here.  

The angles iθ and tθ have the same sign. Figures 1a 
and 1b illustrate the case 2pα θ π+ <  ( , 0i tθ > ); the 

opposite case 2pα θ π+ >  ( , 0i tθ < ) is characterized by 
another positional relationship of the rays and the normal 
to the boundary (Fig. 1c).  

First, the problems should be solved for the case of the 
infinite medium with the vacuum channel and for the 
semi-infinite medium. The solutions of these problems 
are known [11].  

Further, it is necessary to determine the point of 
incidence *M  for the Cherenkov wave on the cone 

(prism) surface. The coordinates of the incidence point 
* *, zρ  are functions of the coordinates of the observation 

point , zρ  situated in vacuum (we use cylindrical 
coordinates). Analysis gives the following results [8]:  

( )* 0 * tanz zρ α= − , ( )
( )

0
*

tan cot
tan cot

t

t

z z
z

α α θ ρ
α α θ
+ + −

=
+ +

, 

sin sint iθ εμ θ= ,
2i p
πθ α θ= − − , ( ) 1

cos pθ εμβ
−

= . 

Note that the volume wave of CTR exists outside the 
object only if the total reflection does not occur, i.e. 

sin 1iεμ θ < .  

Figure 2:  The spectral density ( )2J s mσ ⋅ as a function 

of the distance (cm)cξ  from the cone (prism) vertex 
along the cone or prism surface; values of β  are given 
near the curves. 

The expression for the Fourier transform of magnetic 
component of radiation field outside the object can be 
written in the form  

( )(2)*
*( ) ( ) exp / ,H H D D T i l cφω φω ρ ρ ω≈

where (2)*Hφω  is the incident field at the point *M , T is 
the Fresnel transmission coefficient, l  is the ray path in 
vacuum, and the value ( )D ρ  is a square of cross-section 
of the ray tube. In the case of the cone 
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* *( ) ( )D Dρ ρ ρ ρ= , that is the cylindrical divergence 
(or convergence) takes place. For the prism, this 
expression is more complex.  

The obtained result describes the CTR field outside the 
cone in the zone where the transmitted wave exists. If 

/ 2tα θ π+ < , then this zone is bounded: 

( )0 tan sgnt tz z ρ θ α θ< + +
(dotted lines in Fig. 3a,c).  

Figure 3: The spectral density ( )2J s mσ ⋅ as a function 

of the distance (cm)rξ  along the ray from the cone or 
prism  surface; the initial point *M is situated at 

* 5cmρ = ; values of β are given near the curves. 

However, if / 2tα θ π+ >  then the transmitted wave 
exists everywhere outside the object (Fig. 3b). In this case 
rays are convergent, therefore, for the cone, the wave 
amplitude increases with distance along the ray. For both 
prisms the wave amplitude always decreases along the 
ray, however the rate of change of amplitude depends on 
the problem parameters. 

NUMERICAL RESULTS 
Typical results of computations are presented in Fig. 2 

and 3 where we used the following parameters: 4ε = , 
1μ = , 2 mma = , 1 nCq = − , and 10 -12 3 10 sω π= ⋅ ⋅ . 

The value of σ  shown in the figures is a spectral density 

of energy flowing through a unit square: 
2

c Hφωσ =  .  
Figure 2 illustrates the typical dependences of the 

spectral density of the radiation energy on the distance cξ
from the object vertex (the observation point is situated 
on the border of the object). In any case, the CTR on the 
surface monotonically decrease with cξ , but it  
essentially varies depending on the charge velocity.  

The typical dependences of σ on the distance rξ  from 
the cone boundary along the ray are shown in Fig. 3. In 
the case of the cone, there are some values of the 
parameters when the radiation energy increases with rξ . 
It means that the radiation is a convergent cylindrical 
wave. As a rule, this effect takes place for velocities close 
to the Cherenkov threshold. In the case of prism such 
effect is impossible: radiation always decreases with 
distance from the border. Note also that radiation is more 
intensive for the “prism-I” than for the “prism-II”.  
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