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Abstract 
Linear optics parameters, beta, alpha, phase, x-y 

coupling and dispersion are measured by phase space 
monitor and/or other tools. Nonlinear effects due to the 
space charge and magnets are dominantly determined by 
linear optics. For example, the beam distribution is 
mainly determined by linear optics, and error of beta 
function at a sextuple magnet is larger than error of 
magnet strength in K2β

3/2 generally. This means space 
charge simulation based on the measured optics takes into 
account of the major part of errors. We discuss how beam 
loss degrades and which resonances are induced by the 
errors in the simulations and algebraic analysis. 

INTRODUCTION 
Emittance growth and beam loss are caused by chaotic 

behavior near nonlinear resonances induced by space 
charge force and nonlinear accelerator components. 
Estimation of errors of accelerator elements is inevitable 
to study beam loss in high intensity proton machines, 
because the errors excite and enhance resonances. 
Normally people generate errors using random number to 
realize the errors. Using measured optics is alternative 
way to evaluate effects of the errors. 

One turn map, which characterizes the chaotic behavior, 
is determined by integration of the nonlinear forces and 
linear optics at the nonlinear elements. 

            (1) 
M(si+1,si) is the transfer map from si to si+1: that is, it can 
be transfer map with a weak nonlinearity like an edge 
field of magnets. For simplicity, M is regarded as linear 
transfer map in the explanation. 
    The transformation in exponential expression is 

 .               (2) 
For the case of sextupole magnet, HI is expressed by 

 .      (3) 
For the space charge force, 

,                           (4) 
where Φ which is the space charge potential is given by 
solving Poisson equation. 

M is diagonalized blockwisely using eigenvector 
matrix, V. 

   
              (5) 

where 
                      (6) 

B,R,H are represented by Twiss parameters (α,β), x-y 
coupling (r1-4) and dispersion (η,ζ) [1], respectively. 
Twiss parameters are designed ones and x-y coupling is 
nothing (r1-4=0, R0=I: unit matrix) in general. Twiss (B), 
x-y coupling parameters (R) and tunes (U) are measurable 
quantities. Dispersion is not taken into account in this 
paper (H=I). The measured transfer map is related to the 
design one as follows, 

 
(7) 

The one turn map is expressed by designed transfer 
map and corrected nonlinear map KI,  

                   (8)  
where M0 is the designed transfer map (matrix) written by 
design Twiss parameters,  

 .     (9) 
The corrected nonlinear map is expressed by 

   , 
(10) 

MEASUREMENT OF LINEAR OPTICS 
 Linear optics parameters were obtained by 

measurement of 4 dimensional phase space trajectory 
excited by X or Y mode [1,2]. Second order moments 
<xixj> (i=1,4) of betatron motion in 4 dimensional phase 
space give linear optics parameters. Figure 1 shows 
measured optics parameters, Twiss parameters (α,β), x-y 
coupling (r1-4). Twiss parameters (α,β) deviate from the 
design values about 5%. 
    x-y coupling is measured by detecting a small y signal 
from x mode excitation, vice versa. We had limitation in 
accuracy of the measurement in the present technique. 
The rotation error corresponding measured x-y coupling, 
which is 1-2 mrad, is larger than position survey data. 
Calibration of monitors may be insufficient for 
measurement of x-y coupling. 

SPACE CHARGE SIMULATION USING 
MEASURED LINEAR OPTICS 

We study effects of measured optics in each nonlinear 
element of one turn map in Eqs.(8) and (10). Measured 
beta, alpha, x-y coupling at sextupoles and space charge 
elements are taken into account in simulation. We can 
find which contribution is dominant for the beam loss. 
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Figure 1: Measured optics parameters, Twiss parameters 
(α,β), x-y coupling (r1-4). 
 

 
Figure 2: Beam loss given by space charge simulation 
with the measured optics. Top and bottom plots depict 
beam loss for optics errors in sextupoles and space charge 
elements, respectively. 

 
Figure 2 shows beam loss given by space charge 

simulation with the measured optics. In the top picture, 
measured optics V=BR is adopted at space charge 
elements, while V=BR, V=B and V=B0R are adopted at 
the sextupoles, in Green, Blue and Magenta lines, 
respectively. Strong beam loss is seen in Green (V=BR) 
and Magenta (V=B0R) lines. This behavior indicates that 
x-y coupling in sextupoles is dominant for the beam loss. 

In the bottom picture, V=B0 is adopted in sextupoles, 
while V=BR, V=B and V=B0R are adopted at the space 
charge elements in Green, Blue and magenta lines, 
respectively.  The loss rate is far less than the cases with 
optics erros in sextupoles. Error of beta function 
dominates in the beam loss compare than x-y coupling for 
space charge elements.  

 

LATTICE RESONANCE INDUCED BY 
MEASURED OPTICS 

We now study resonance characteristics induced by 
sextupole magnets for the measured linear optics. One 
turn map is modeled by tune spread due to space charge 
potential (U0(Jx,Jy)) and resonance (Gm(Jx,Jy)) from 
sextupoles hereafter as follows, 

 
 

(11) 
where resonance terms due to space charge and tune 
spread due to sextupoles are neglected. This model is 
motivated by the simulation results, in which the beam 
loss is mainly caused by optics error in sextupoles (Figure 
2).  

Beam particles are diffused by a resonance and its 
modulation due to synchrotron motion [3]. Resonance 
island width is essential parameter to characterize the 
emittance growth,  

,                       (12) 
where Λ, which is tune sloop in J space, is represented by 
second derivatives of the space charge potential, 

(13) 
Figure 3 shows d2U/dJx

2 of the space charge potential for 
a round beam. d2U/dJy

2 and d2U/dJxdJy have similar 
behavior. The tune sloop of space charge is far larger than 
that of lattice nonlinearity. The values of z axes are 
d2U/dJx

2=3x106 for J/ε=4 (2σ), 1x106 for J/ ε =9(3σ). The 
space charge force induces resonances far from the 
operating point, while their widths are small due to the 
large tune sloop. Lattice tune spread (weak space charge) 
induces resonances near the operating point, while their 
widths are large due to the small tune sloop. 
   The tune shift (spread) of the space charge potential is 
shown in Figure 4. Black and red dots show tune for peak 
and its half line density of the J-PARC beam in every 0.5 
ε step (0<Jxy<16 ε). Resonance lines overlapping the tune 
spread area are indicated by (mx,my), where the operating 
point is (νx, νy)=(0.4,0.75).  
   The resonance strengths (Gm) of sextupoles are 
evaluated by polynomial one turn map by 12-th order. 
The map is factorized by 
 
 

       (14) 
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 To evaluate the resonance width, Gm has to be evaluated 
at amplitude, where the resonance condition is satisfied at

 (JxR,JyR). For simplicity, the resonance strength is 
evaluated at JxR+JyR=9 ε (3σ). Tune sloop, which also 
depends on (JxR,JyR), is 106 as a typical value shown in 
Figure 3. Table 1 shows the widths of resonances

 overlapping with the tune spread due to the space charge 
potential. Right three columns show resonance widths for 
V=B0 (design lattice), V=B (without x-y coupling) and 
V=BR (measured). Skew resonances (1,1), (2,±1), (0,3), 
(1,±3) and (3,±1) appear for the measured optics 
parameters, V=BR. Enhancement of the resonance 
strength due to beta function modulation is seen in (3,0) 
and (1,±2). The resonance widths, which are around 0.1-
1 mm.mrad, are not negligible for the beam emittance 
ε=4mm.mrad. Note that they have ambiguity of factor, 
because of the choice of (JxR,JyR) discussed above. 
    The linear optics parameters are distorted by the space 
charge force.  The distorted parameters are evaluated by 
envelope formalism in 4 dimensional phase space [1,2]. It 
may be better to parameterize the nonlinear components 
under linear optics containing linearized space charge 
force in Eq.(14).   

 
Figure 3: Second derivative of space charge potential, 
dνx(Jx,Jy)/dJx for a round beam, where x-y axes are Jx/εx-
Jy/εy.  

 

 
Figure 4: Tune spread and related resonances  for J-
PARC MR. Horizontal and vertical axes are νx and νy, 
respectively. The integer part is 22(x) and 20(y). 

 

SUMMARY AND CONCLUSIONS 
Estimation of errors of accelerator elements is 

inevitable to study beam loss. Normally people generate 
errors using random number to realize the errors. Using 
measured optics is alternative way to evaluate the errors. 
Accuracy of the measurement is still a question and 
should be cleared. We have studied space charge effects 
based on the measured optics parameters. X-y coupling in 
sextupole magnets degraded the beam loss performance, 
while the beta function modulation little degraded. Optics 
errors in space charge elements were smaller effects than 
those in sextupoles. 

Resonance widths were evaluated based on the 
measured optics parameters. Some resonances were 
induced and enhanced by the optics errors. The widths 
(ΔJ) were 0.1-1 mm.mrad were not negligible for the 
emittance ε=4mm.mrad. Modulation of the resonances 
with large widths due to the synchrotron motion causes 
emittance growth and beam loss. 

ACKNOWLEDGMENT 
The authors thank members of J-PARC commissioning 

team who helps the optics parameter measurements. This 
work is supported by the Large Scale Simulation Program 
No.12/13-06 of KEK. 

REFERENCES 
[1] Y. Onishi et al., Phys. Rev. ST-AB 12, 091002 

(2009); K. Ohmi, Proceedings of IPAC10, 1539, 
TUPEB012. 

[2] K. Ohmi et al., Proceedings of HB2012, THO1B03. 
[3] K. Ohmi, K. Oide, Phys. Rev. ST-AB 10, 014401 

(2007). 
 
Table 1: Resonance widths determined by linear optics 
at sextupoles. The unit of ΔJ is mm.mrad. 

mx my ΔJ (B0) ΔJ (B) ΔJ (BR) 
1 0 0.440  0.868  0.863  
2 0 0.315  0.426  0.432  
1 1 0.000  0.000  0.127  
0 2 0.149  0.125  0.104  
3 0 0.467  0.719  0.727  
2 1 0.000  0.000  0.754  
2 -1 0.000  0.000  0.564  
1 2 0.432  0.843  0.855  
1 -2 0.768  1.044  1.044  
0 3 0.000  0.000  0.662  
4 0 1.001  1.002  1.002  
3 1 0.000  0.000  0.165  
3 -1 0.000  0.000  0.053  
2 2 0.315  0.154  0.149  
2 -2 0.225  0.183  0.179  
1 3 0.000  0.000  0.119  
1 -3 0.000  0.000  0.058  
0 4 0.219  0.241  0.238  
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