Author: Zhang, H.
Paper Title Page
MOPWO083 LEIC - A Polarized Low Energy Electron-ion Collider at Jefferson Lab 1070
 
  • Y. Zhang, Y.S. Derbenev, A. Hutton, G.A. Krafft, R. Li, F. Lin, V.S. Morozov, E.W. Nissen, R.A. Rimmer, H. Wang, S. Wang, B.C. Yunn, H. Zhang
    JLAB, Newport News, Virginia, USA
  • M.K. Sullivan
    SLAC, Menlo Park, California, USA
 
  Funding: Supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC05-06OR23177 and DE-AC02-06CH11357.
A polarized electron-ion collider is envisioned as the future nuclear science program at JLab beyond the 12 GeV CEBAF. Presently, a medium energy collider (MEIC) is set as an immediate goal with options for a future energy upgrade. A comprehensive design report for MEIC has been released recently. The MEIC facility could also accommodate electron and proton/ion collisions in a low CM energy range, covering proton energies from 10 to 25 GeV and ion energies with a similar magnetic rigidity, for additional science reach. In this paper, we present a conceptual design of this low energy collider, LEIC, showing its luminosity can reach above 1033 cm-2s−1. The design specifies that the large booster of the MEIC is converted to a low energy ion collider ring with an interaction region and an electron cooler integrated into it. The design provides options for either sharing the detector with the MEIC or a dedicated low energy detector in a third collision point, with advantages of either a minimum cost or extra detection parallel to the MEIC operation, respectively. The LEIC could be positioned as the first and low cost phase of a multi-stage approach to realize the full MEIC.