Author: Yokoya, K.
Paper Title Page
TUPME015 Proposal of Polarized Gamma-ray Source for ILC Based on CSR Inverse Compton Scattering 1598
 
  • M. Shimada, K. Yokoya
    KEK, Ibaraki, Japan
  • R. Hajima
    JAEA, Ibaraki-ken, Japan
  • M. Tecimer
    University of Hawaii at Manoa, Honolulu, USA
 
  The positron source of International Linear Collider (ILC) requires a circular polarized gamma-ray with a flux more than 1016 phs./s and a helical undulator-based gamma-ray source is proposed in the baseline design. Although the undulator scheme is technically feasible, it is not easy for a stand-alone operation because of the required electron energy, ~ 150GeV. In this paper, we propose an alternative method, the inverse Compton scattering with a high-power mid-infrared optical pulse generated from coherent synchrotron radiation (CSR). To achieve the high flux gamma-ray, CSR with a few MHz is stacked in a high-finesse optical cavity made of a photonic crystal. In the proposed scheme, a stand-alone operation is feasible because the electron energy is less than 10GeV.  
 
TUPME056 3.5 GeV Superconducting Stacking Ring for Compton Based Polarized Positrons Source of CLIC 1697
 
  • E.V. Bulyak, P. Gladkikh, A.A. Kalamayko
    NSC/KIPT, Kharkov, Ukraine
  • T. Omori, J. Urakawa, K. Yokoya
    KEK, Ibaraki, Japan
  • L. Rinolfi, F. Zimmermann
    CERN, Geneva, Switzerland
 
  This paper describes 3.5 GeV superconducting storage ring dedicated to positron accumulation as part of a polarized positron source for CLIC, based on Compton scattering in a Compton storage ring. The superconducting stacking ring can provide a synchrotron damping time of order 250 microseconds. Together with combined injection scheme in the longitudinal and transverse plane, such a ring may solve the problem of accumulating a positron beam with efficiency close to 95 % and with the beam intensity required for CLIC.  
 
THOBB203 Study on Fabrication of Superconducting RF 9-cell Cavity for ILC at KEK 3132
 
  • T. Saeki, Y. Ajima, K. Enami, H. Hayano, H. Inoue, E. Kako, S. Kato, S. Koike, T. Kubo, S. Noguchi, M. Satoh, M. Sawabe, T. Shishido, A. Terashima, N. Toge, K. Ueno, K. Umemori, K. Watanabe, Y. Watanabe, S. Yamaguchi, A. Yamamoto, Y. Yamamoto, M. Yamanaka, K. Yokoya
    KEK, Ibaraki, Japan
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto, Japan
  • N. Kawabata, H. Nakamura, K. Nohara, M. Shinohara
    SPS, Funabashi-shi, Japan
  • F. Yasuda
    The University of Tokyo, Institute of Physics, Tokyo, Japan
 
  We constructed a new facility for the fabrication of superconducting RF cavity at KEK from 2009 to 2011. In the facility, we have installed a deep-drawing machine, a half-cell trimming machine, an electron-beam welding machine, and a chemical etching room in one place. We started the study on the fabrication of 9-cell cavity for International Linear Collier (ILC) from 2009 using this facility. The study is focusing on the cost reduction with keeping high performance of cavity, and the goal is the establishment of mass-production procedure for ILC. This article reports the current status of the studies in CFF.  
slides icon Slides THOBB203 [3.983 MB]