Author: Vollaire, J.
Paper Title Page
WEPEA042 The PS Upgrade Programme: Recent Advances 2594
 
  • S.S. Gilardoni, S. Bart Pedersen, C. Bertone, N. Biancacci, A. Blas, D. Bodart, J. Borburgh, P. Chiggiato, H. Damerau, S. Damjanovic, J.D. Devine, T. Dobers, M. Gourber-Pace, S. Hancock, A. Huschauer, G. Iadarola, L.A. Lopez Hernandez, A. Masi, S. Mataguez, E. Métral, M.M. Paoluzzi, S. Persichelli, S. Pittet, S. Roesler, C. Rossi, G. Rumolo, B. Salvant, R. Steerenberg, G. Sterbini, L. Ventura, J. Vollaire, R. Wasef, C. Yin Vallgren
    CERN, Geneva, Switzerland
  • M. Migliorati
    University of Rome "La Sapienza", Rome, Italy
 
  The LHC Injectors Upgrade project (LIU) has been initiated to improve the performances of the existing injector complex at CERN to match the future requirements of the HL-LHC. In this framework, the Proton Synchrotron (PS) will undergo fundamental changes for many of its main systems: the injection energy will be increased to reduce space-charge effects, the transverse damper will be improved to cope with transverse instabilities the RF systems will be upgraded to accelerate higher beam intensity and brightness. These hardware improvements are triggered by a series of studies meant to identify the most critical performance bottlenecks, like space charge, impedances, longitudinal and transverse instabilities, as well as electron-cloud. Additionally, alternative production schemes for the LHC-type beams have been proposed and implemented to circumvent some of the present limitations. A summary of the most recent advances of the studies, as well as the proposed hardware improvements is given.  
 
THPEA039 Radiation Protection Study for the Shielding Design of the LINAC 4 Beam Dump at CERN 3225
 
  • J. Blaha, J. Vollaire
    CERN, Geneva, Switzerland
 
  Linac4, a new 160 MeV H accelerator, is currently being constructed at CERN. The accelerator is terminated by a dump collecting beam which is not intended for further utilization. The aim of this study is to determine an optimal shielding of the beam dump fulfilling the radio-protection requirements. The proposed shielding must take into account different accelerator operational phases, the space constraints inside the accelerator vault as well as the decommissioning of the installation at the end of its lifetime. Therefore a detailed Monte-Carlo calculation using FLUKA particle transport and interaction code has been performed and the relevant physics quantities have been evaluated for different irradiation profiles and shielding material. Moreover, the residual dose rate and induced activation have been calculated for several cooling times in order to optimize the choice of the shielding material following the ALARA principle. Finally the airborne radioactivity induced by particles escaping the shielding as well as the activation of the beam dump cooling water have been also calculated using FLUKA and simplified laminar flow models.