Author: Uesaka, M.
Paper Title Page
TUPEA065 Design of a Photonic Crystal Accelerator for Basic Radiation Biology 1283
 
  • A. Aimidula, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • A. Aimidula, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • K. Koyama, Y. Matsumura
    University of Tokyo, Tokyo, Japan
  • T. Natsui, M.Y. Yoshida
    KEK, Ibaraki, Japan
  • M. Uesaka
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken, Japan
  • G.X. Xia
    UMAN, Manchester, United Kingdom
 
  Funding: This work is supported by the EU under Grant Agreement 289485, the STFC Cockcroft Institute Core Grant No. ST/G008248/1 and KAKENHI, Grant-in-Aid for Scientific Research (C) 24510120.
The application of photonic crystals to realize an on-chip electron beam source for fundamental radiation biology is highly interesting for a number of applications. The unique combination of nanometer beam size and attosecond-short pulses has a very promising potential for use in microscopic and ultra-fast analyses of damage and repair of radiation-irradiated DNA and chromosomes. Simulations studies indicate an output electron beam energy, beam intensity and device size of the order of MeVs, fCs and a few cm, respectively. In this contribution, first results from numerical studies into the design of such compact accelerator structure are presented. The dimensions of a novel dual grating-based acceleration structure are shown together with the estimated laser parameters. Finally, a system consisting of an electron injector and multi-stage accelerating structures is proposed, which corresponds to a miniaturized optical linear accelerator.
 
 
THPWA010 Application of X-band 30 MeV Linac Neutron Source to Nuclear Material Analysis for Fukushima Nuclear Plant Accident 3648
 
  • M. Uesaka, K. Dobashi, T. Fujiwara
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken, Japan
  • H. Harada
    JAEA, Ibaraki-ken, Japan
  • K. Tagi
    University of Tokyo, Tokyo, Japan
  • M. Yamamoto
    Accuthera Inc., Kawasaki, Kanagawa, Japan
 
  We plan to use our X-band (11.424GHz) electron linac as a neutron source for the nuclear analysis for the Fukushima nuclear plant accident. Quantitative material analysis and forensics for nuclear security will start several years later after the safe settlement of the accident is established. For the purpose, we should now accumulate more precise nuclear data of U, Pu, TRU and MA especially in epithermal (0.1-10 eV) neutrons. Therefore, we have decided to move the linac into the core of the experimental nuclear reactor “Yayoi” which is now under the decommission procedure. First we plan to perform the TOF (Time Of Flight) transmission measurement of the total cross sections of the nuclei for 0.1-10 eV neutrons. Electron energy, macro-pulse length, power and neutron yield are ~30 MeV, 100 ns – 1 micros, <0.5 kW and <1012 n/s, respectively. Optimization of the design of a neutron target (Ta, W, U), TOF line and neutron detector (Ce:LiCAF) of high sensitivity and fast response is underway. Installation, commissioning and measurement starts in 2014. Detailed design and way how to contribute to the analysis of the Fukushima nuclear plant accident will be presented.