Author: Toral, F.
Paper Title Page
MOPWO022 Design and Manufacturing Description of the Prototype Striplines for the Extraction Kicker of the CLIC Damping Rings 930
 
  • C. Belver-Aguilar, A. Faus-Golfe
    IFIC, Valencia, Spain
  • M.J. Barnes
    CERN, Geneva, Switzerland
  • J. Gómez
    Trinos Vacuum Projects, Paterna, Spain
  • D. Gutiérrez Arribas
    Trinos Vacuum Projects, S.L., Paterna - Valencia, Spain
  • F. Toral
    CIEMAT, Madrid, Spain
 
  The Pre-Damping Rings (PDRs) and Damping Rings (DRs) of CLIC are needed to reduce the beam emittances to the small values required for the main linacs. The injection and extraction, from the PDRs and DRs, are carried out by kicker systems. In order to achieve both low beam coupling impedance and reasonable broadband impedance matching to the electrical circuit, striplines have been chosen for the kicker elements. The design of the stripline kicker was previously carried out by modelling the striplines with simulation codes such as HFSS, Quickfield and CST Particle Studio. In order to have a complete analysis of the striplines, the effect of electrodes supports and coaxial feedthroughs have been studied in detail. In this paper, electromagnetic analyses of the complete striplines, including fabrication tolerances, are reported. Furthermore, a new idea for impedance matching is presented.  
 
THPFI004 Progress on the SRF Linac Developments for the IFMIF-LIPAC Project 3294
 
  • F. Orsini
    CEA/DSM/IRFU, France
  • P. Abramian, J. Calero, J.C. Calvo, J.L. Gutiérrez, T. Martínez de Alvaro, J. Munilla, I. Podadera, F. Toral
    CIEMAT, Madrid, Spain
  • N. Bazin, P. Brédy, P. Carbonnier, G. Devanz, G. Disset, N. Grouas, P. Hardy, V.M. Hennion, H. Jenhani, J. Migne, A. Mohamed, J. Neyret, J. Relland, B. Renard, D. Roudier
    CEA/IRFU, Gif-sur-Yvette, France
 
  In the framework of the International Fusion Materials Irradiation Facility (IFMIF), which consists of two high power accelerator drivers, each delivering a 125 mA deuteron beam at 40 MeV in CW, an accelerator prototype is presently under design and realization for the first phase of the project. This accelerator includes a SRF Linac, which is designed for the transportation and focalization of the deuteron beam up to 9 MeV. This SRF Linac is a large cryomodule of ~6 m long, working at 4.4 K and at the frequency of 175 MHz in continuous wave. It is mainly composed of 8 low-beta HWRs, 8 Solenoid Packages and 8 RF Power Couplers. This paper focuses on the recent developments and changes made on the SRF Linac design: following the abandon of the HWR frequency tuning system, initially based on a plunger located inside the central region of the resonator, a new external tuning system has been designed, implying a complete redesign of the resonator and consequently impacting the cryomodule lattice. The recent changes in the design are presented in this paper. In addition, cold tests were performed on a HWR prototype and cold tests results of the magnets prototypes are also presented.