Author: Tongu, H.
Paper Title Page
WEPWO017 Efforts on Nondestructive Inspections for SC Cavities 2352
 
  • Y. Iwashita, Y. Fuwa, M. Hashida, S. Sakabe, S. Tokita, H. Tongu
    Kyoto ICR, Uji, Kyoto, Japan
  • H. Hayano, K. Watanabe, Y. Yamamoto
    KEK, Ibaraki, Japan
  • K. Otani
    INRS-EMT, Varennes (Québec), Canada
 
  The high resolution camera, so-called Kyoto Camera, inspecting the Sc cavity inner surface showed the importance of nondestructive inspections to improve yield in production of high performance SC Cavities. Further efforts have been continued for the inspection and the high resolution T-map, X-map and eddy current scanner have been developed. A radiography to detect small voids inside the Nb EBW seam with the target resolution of 0.1 mm is under investigation. We have carried out radiography tests with X-rays induced from an ultra short pulse intense laser.  
 
WEPFI024 Anisotropic Ferrite Magnet Focusing System for Klystrons 2756
 
  • Y. Fuwa, H. Ikeda, Y. Iwashita, R. Kitahara, Y. Nasu, H. Tongu
    Kyoto ICR, Uji, Kyoto, Japan
  • S. Fukuda, T. Matsumoto, S. Michizono
    KEK, Ibaraki, Japan
 
  The permanent magnet beam focusing for klystrons can eliminate the solenoid coil with the water cooling system and the power supply that consumes electricity. Hence the failure rate and the operating cost of RF systems should decrease. This feature is suitable for a large facility that requires a lot of klystrons such as ILC. Since the required magnetic field for klystron beam is moderate, inexpensive anisotropic ferrite magnets can be applied. The test model is fabricated for a 1.3 GHz klystron whose output power is 800 kW. Each magnet block in the model is movable for magnetic field adjustment and the iron yoke in the oil tank improves magnetic field distribution around cathode area. The result of a klystron power test will be presented.