Author: Thomsen, H.D.
Paper Title Page
MOPEA005 A Linear Beam Raster System for the European Spallation Source? 70
 
  • H.D. Thomsen, A.I.S. Holm, S.P. Møller
    ISA, Aarhus, Denmark
 
  The European Spallation Source (ESS) will, when built, be the most intense neutron source in the world. The neutrons are generated by a high power (5 MW) proton beam impacting a rotating W spallation target. To reduce the replacement frequency of components subjected to the full beam current, i.e. the proton beam window and the target, means to introduce low peak current densities, i.e. flat transverse beam profiles, are necessary. The relatively long beam pulse duration of 2.86 ms (at 14 Hz) leaves ample time to facilitate a Lissajous-like, linear raster system that illuminates a footprint area by sweeping an only moderately enlarged LINAC beamlet. Although slightly more technically challenging, this method has many advantages over the previously envisaged beam expander system based on non-linear DC magnets. The design, specifications, performance, and benefits of the beam raster system will be described and discussed.  
 
THPME001 Permanent Magnets in Accelerators can save Energy, Space, and Cost 3511
 
  • F. Bødker, L.O. Baandrup, A. Baurichter, N. Hauge, K.F. Laurberg, B.R. Nielsen, G. Nielsen
    Danfysik A/S, Taastrup, Denmark
  • O. Balling
    Aarhus University, Aarhus, Denmark
  • F.B. Bendixen, P. Kjeldsteen, P. Valler
    Sintex A/S, Hobro, Denmark
  • S.P. Møller, H.D. Thomsen
    ISA, Aarhus, Denmark
  • H.-A. Synal
    ETH, Zurich, Switzerland
 
  Green Magnet technology with close to zero electrical power consumption without the need for cooling water saves costs, space and hence spares natural resources. A compact dipole based on permanent magnets has been developed at Danfysik in collaboration with Sintex and Aarhus University. This first Green Magnet has been delivered to ETH Zurich for testing in a compact accelerator mass spectrometer facility. Permanent NdFeB magnets generate a fixed magnetic field of 0.43 T at a gap of 38.5 mm without using electrical power in the H-type 90° bending magnet with a bending radius of 250 mm. Thermal drift of the permanent magnets is passively compensated. Small air cooled trim coils permit fine tuning of the magnetic field. Magnetic field measurements and thermal stability tests show that the Green Magnet fully meets the magnetic requirements of the previously used electromagnet. The use of Green Magnet technology in other accelerator systems like synchrotron light sources is discussed.  
 
THPWA038 GEANT4 Studies of Magnets Activation in the HEBT Line for the European Spallation Source 3714
 
  • C. Bungau, R.J. Barlow, A. Bungau, R. Cywinski, T.R. Edgecock
    University of Huddersfield, Huddersfield, United Kingdom
  • P. Carlsson, H. Danared, F. Mezei
    ESS, Lund, Sweden
  • A.I.S. Holm, S.P. Møller, H.D. Thomsen
    ISA, Aarhus, Denmark
 
  The High Energy Beam Transport (HEBT) line for the European Spallation Source is designed to transport the beam from the underground linac to the target at the surface level while keeping the beam losses small and providing the requested beam footprint and profile on the target. This paper presents activation studies of the magnets in the HEBT line due to backscattered neutrons from the target and beam interactions inside the collimators producing unstable isotopes.