Author: Suganuma, K.
Paper Title Page
MOPME025 Production of Extraction Kicker Magnet of the J-PARC 3-GeV RCS 526
 
  • M. Kinsho, N. Ogiwara, K. Suganuma
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  The J-PARC 3-GeV rapid cycling synchrotron (RCS) has been provided proton beam to the Material and Life Science Facility (MLF)as well as to the 50 GeV Main Ring (MR). Proton beam is accelerated from 181 MeV to 3GeV in the RCS and immediately extracted it to the beam transport line to the MLF and the MR. Extraction kicker magnets are used for this fast extraction. To improve reliability of the RCS for user operation, production of a reserve kicker magnet has been performed. The kicker magnet mainly consists of Ni-Zn ferrite cores and Aluminum alloy plates, and these parts are installed in vacuum chamber to prevent discharge because a high voltage is applied to the magnet for a short period. Since it is important to reduce the outgassing of water vapor form these parts to prevent discharge, we has been produced the reserve magnet with low outgassing at high voltage discharge. Since assemble of the kicker magnet already finished and vacuum test has been performed, the result of vacuum test is reported.  
 
MOPWA007 Operating Experience of Kicker Magnet System in the J-PARC 3GeV RCS 678
 
  • K. Suganuma, M. Kinsho, T. Togashi, M. Watanabe
    JAEA/J-PARC, Tokai-mura, Japan
 
  The J-PARC 3-GeV rapid cycling synchrotron (RCS) has been provided proton beam to the Material and Life Science Facility (MLF)as well as to the 50 GeV Main Ring (MR). Proton beam is accelerated from 181 MeV to 3GeV in the RCS and immediately extracted it to the beam transport line to the MLF and the MR. Extraction kicker system is used for this fast extraction. The RCS has been operated for the neutron and MLF users program from December 23rd, 2008. At the beginning of user operation there were many troubles for the extraction kicker system, especially, thyratron which are used for switch of power supply often caused failure. The beam stop rate due to RCS extraction kicker system was more than 13% in the total beam stop of the J-PARC, establishment and operation experience of the tuning for power supply of the extraction kicker make the beam stop rate less than 0.5% in November 2012. In this paper, we are going to report about daily operation whose main is about operation of thyratron and the maintenance held in summer 2012. And  We also going to report about the aptitude test of thyratron as a plan of the future.  
 
THPFI015 In-situ Degassing of the Ferrite Cores in the Extraction Kicker Magnets of the J-PARC 3-GeV RCS 3324
 
  • J. Kamiya, Y. Hikichi, M. Kinsho, M. Nishikawa, N. Ogiwara, K. Suganuma, T. Yanagibashi
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  Kicker magnets extract the accelerated beam to the beam transport lines in the RCS of the J-PARC. The kicker magnets mainly consist of Ni-Zn ferrite cores and Al alloy plates, and are installed in a vacuum to prevent discharge because a high voltage is applied for a short period. It is important to reduce the outgassing of water vapor from the ferrite cores. Although the kicker magnets have been working well, recently the vacuum quality became a little poor. Thus, we developed the in-situ degassing method for the ferrite cores. This is achieved by directing the heat from the heat source to the kicker magnet and not to the chamber wall. With the test stand we succeeded to flow almost all the heat toward the kicker magnet and to bake out the ferrite cores about 150°C, maintaining the temperature of the chamber wall less than 50°C. As the previous work with TDS measurements revealed that the absorbed water molecules can be easily removed by the bake-out at 100-150°C in a vacuum, the outgassing from the ferrite cores was successfully reduced. The details of the in-situ degassing method will be reported, including the practical method to reduce the outgassing of the working kickers.