Author: Singh, B.
Paper Title Page
MOPEA066 Investigation and Test of the Possibility of Reducing the Emittance of the Diamond Storage Ring 234
 
  • B. Singh, M. Apollonio, R. Bartolini, E.C. Longhi
    Diamond, Oxfordshire, United Kingdom
  • R. Bartolini, T. Pulampong
    JAI, Oxford, United Kingdom
 
  Theoretical and experimental studies have been carried out at the Diamond Light Source to assess the possibility of reducing the emittance of the existing storage ring by means of a change to the optics. The optics solutions obtained so far using a Multi Objective Genetic Algorithm (MOGA) increase the dispersion and the horizontal beta function in the straight section. While the emittance can be reduced to 2.1 nm this optics is limited by the operation of high field superconducting wiggler devices. In this report we present details of the new optics and present results of practical tests. We also compare the theoretical emittance growth due to a wiggler in a dispersive region with test results.  
 
TUPWO057 Active Shimming of Dynamic Multipoles of an APPLE II Undulator in the Diamond Storage Ring 1997
 
  • B. Singh, R. Bartolini, R.T. Fielder, E.C. Longhi, I.P.S. Martin, S.P. Mhaskar, R.P. Walker
    Diamond, Oxfordshire, United Kingdom
  • R. Bartolini
    JAI, Oxford, United Kingdom
 
  Diamond plans to operate a 5 m, long period length, APPLE undulator in a long insertion straight section. Theoretical investigations showed a severe impact on machine dynamics especially when the device is operated in vertical polarization mode. The use of local optics corrections and/or lowering of beta functions were initially investigated as possible solutions but with limited success. Active shimming of dynamic multipoles, following the approach at BESSY-II, proved more effective. The optimum shiming has been devised using kick map approach. In this paper we review the theoretical analysis, the commissioning of the active shims and the undulator, and the net effect of the undulator after compensation.