Author: Sikora, J.P.
Paper Title Page
MOPWA071 A Comparison of Electron Cloud Density Measurements at CesrTA 843
 
  • J.P. Sikora, J.A. Crittenden, D.O. Duggins, Y. Li, X. Liu
    CLASSE, Ithaca, New York, USA
  • S. De Santis
    LBNL, Berkeley, California, USA
 
  Funding: This work is supported by the US National Science Foundation PHY-0734867, PHY-1002467, and the US Department of Energy DE-FC02-08ER41538, DE-SC0006505.
Several techniques have been employed to measure the electron cloud (EC) density in accelerators. These include Time Resolved Retarding Field Analyzers (TR-RFA) and Shielded Pickups (SPU) that measure the flux of cloud electrons onto the beam-pipe wall, as well as TE wave resonance techniques that measure the EC density in a region within the volume of the beam-pipe. We have made measurements to test the EC mitigation properties of different surface coatings and geometries, often with more than one technique used in the same test chamber. We present a comparison of bare aluminum chambers with those having a TiN coating, as well as the effect of beam conditioning. In addition, we will compare the results of the different measurement techniques used in the same chamber. These measurements were made at the Cornell Electron Storage Ring (CESR) which has been reconfigured as a test accelerator (CesrTA) having positron or electron beam energies ranging from 2 GeV to 5 GeV.
 
 
MOPWA072 MODELING FOR TIME-RESOLVED RETARDING FIELD ANALYZER MEASUREMENTS OF ELECTRON CLOUD BUILDUP AT CesrTA 846
 
  • J.A. Crittenden, Y. Li, X. Liu, M.A. Palmer, J.P. Sikora
    CLASSE, Ithaca, New York, USA
 
  Funding: US National Science Foundation PHY-0734867, PHY-1002467, and the U.S. Department of Energy DE-FC02-08ER41538
The Cornell Electron Storage Ring Test Accelerator program includes investigations into electron cloud buildup mitigation techniques using custom vacuum chambers. Multibunch electron and positron beams of energies between 2.1 and 5.3 GeV with bunch spacings from 4 to 98 ns and bunch populations ranging from 1010 to 16·1010 provide highly differentiated sensitivity to the processes contributing to cloud buildup such as photoelectron production, cloud space-charge dynamics, and secondary electron emission. Measurements of the time dependence of cloud buildup using BPM-style shielded pickups have been shown to provide tight constraints on cloud buildup models. Recently, time-resolving retarding-field analyzers have been designed, installed and commissioned. These novel detectors combine the time-resolving feature of the shielded pickups with the fine transverse segmentation and cloud electron energy sensitivity of the time-integrating retarding-field analyzers used previously. We report on progress in modeling these measurements and quantify their sensitivity to various parameters describing the underlying physical processes contributing to cloud buildup.