Author: Rider, N.T.
Paper Title Page
TUODB103 Recent Results from CesrTA Intrabeam Scattering Investigations 1126
 
  • M. P. Ehrlichman, A. Chatterjee, W. Hartung, D.P. Peterson, N.T. Rider, D. L. Rubin, D. Sagan, J.P. Shanks, S. Wang
    CLASSE, Ithaca, New York, USA
 
  Funding: This research was supported by NSF and DOE contracts PHY-0734867, PHY-1002467, PHYS-1068662, DE-FC02-08ER41538, DE-SC0006505.
Manifestation of intrabeam scattering (IBS) in an electron/positron storage ring depends on the radiation damping time in two ways. First, the beam size is the equilibrium of the IBS growth rate in each of the three degrees of freedom and corresponding damping rates. Second, scattering events that occur less frequently than order once per damping time contribute to non-Gaussian tails that are invisible to our beam size monitors. The tail cut procedure excludes these relatively rare events in the calculation of equilibrium beam size. In machines with short damping times, the tail cut significantly reduces the effective IBS growth rate. At CesrTA, we measure the dependence of beam size on bunch charge in IBS-dominated beams. We vary the vertical emittance using a closed optics bump that increases the vertical dispersion and transverse coupling in the wiggler regions. Measurements are taken at both 2.1 and 2.3 GeV. Here we report the results of these experiments and compare those results to theory.
 
slides icon Slides TUODB103 [1.221 MB]  
 
TUPME065 Experimental Study of Horizontal-Longitudinal Coupling at CesrTA 1715
 
  • M. P. Ehrlichman, A. Chatterjee, W. Hartung, D.P. Peterson, N.T. Rider, D. L. Rubin, J.P. Shanks, S. Wang
    CLASSE, Ithaca, New York, USA
 
  Funding: This research was supported by NSF and DOE contracts PHY-0734867, PHY-1002467, PHYS-1068662, DE-FC02-08ER41538, DE-SC0006505.
In storage rings, the presence of horizontal dispersion in the RF cavities introduces x-z coupling. The result is that the beam is skewed in the horizontal-longitudinal plane. The skew angle is proportional to the V15 term of the 6X6 coupling matrix which is proportional to the RF cavity voltage and the horizontal dispersion in the cavity. Here we report experiments at CesrTA where x-z coupling was explored using three distinct lattice configurations with different V15 coupling terms. We explore x-z coupling for each of these lattices by measuring the horizontal projection of the beam with a beam size monitor, as the RF voltage is varied. The first lattice has about 1 m dispersion in the RF cavities, resulting in a V15 term at the beam size monitor source point corresponding to 16 mrad x-z tilt. In the second, the V15 generated in one pair of cavities is compensated at the second pair by adjusting the horizontal betatron phase advance between the cavity pairs. In the third, the optics are adjusted so that the RF cavity region is dispersion-free, eliminating the coupling entirely. Additionally, intra-beam scattering is evident in our measurements of beam size vs. RF voltage.
 
 
TUPWA061 Observation at CesrTA of the Reduction of the Vertical Beam Size of the Lead Bunch in a Train Due to the Presence of a Precursor Bunch 1841
 
  • M.G. Billing, K.R. Butler, G. Dugan, M.J. Forster, R.E. Meller, G. Ramirez, N.T. Rider, K.G. Sonnad, H.A. Williams
    CLASSE, Ithaca, New York, USA
  • J.W. Flanagan
    KEK, Ibaraki, Japan
  • R. Holtzapple, M. Randazzo
    CalPoly, San Luis Obispo, California, USA
  • M.A. Palmer
    Fermilab, Batavia, USA
 
  Funding: Work supported by DOE Award DE-FC02-08ER41538, NSF Award PHY-0734867, PHY-1068662 and the Lepton Collider R&D Coop Agreement: NSF Award PHY-1002467.
Electron cloud-induced beam dynamics is being studied at CesrTA under various conditions. These measurements make use of instrumentation for the detection of the coherent self-excited spectrum for each bunch within the train and bunch-by-bunch vertical beam size. In the position spectrum coherent betatron dipole and head-tail motion is detectable for each individual bunch within the train. These techniques are utilized to study the electron cloud-related interactions, which cause the growth of coherent motion and beam size along the train. We report on the observations of the vertical enlargement of the first bunch(es) in 30 bunch-long trains. We also report that the addition of a precursor bunch following the train of bunches and before the start of the next train can counteract the vertical enlargement of the first bunch(es) in the train. Results from these observations will be presented.
 
 
TUPWA062 Dependence of Beam Instabilities Caused by Electron Clouds at CesrTA on Variations in Bunch Spacing and Chromaticity 1844
 
  • M.G. Billing, K.R. Butler, G. Dugan, M.J. Forster, R.E. Meller, M.A. Palmer, G. Ramirez, N.T. Rider, K.G. Sonnad, H.A. Williams
    CLASSE, Ithaca, New York, USA
  • R.F. Campbell, R. Holtzapple, M. Randazzo
    CalPoly, San Luis Obispo, California, USA
  • J.W. Flanagan
    KEK, Ibaraki, Japan
 
  Funding: Work supported by DOE Award DE-FC02-08ER41538, NSF Award PHY-0734867 and the Lepton Collider R&D Coop Agreement: NSF Award PHY-1002467
Experiments have been performed at the Cornell Electron-Positron Storage Ring Test Accelerator (CesrTA) to probe the interaction of the electron cloud with a 2.1 Gev stored positron beam. The purpose of these experiments was to characterize the dependence of beam–electron cloud interactions on the bunch spacing and the vertical chromaticity. These experiments were performed on a 30-bunch positron train, at a fixed current of 0.75mA/bunch. The bunch spacing was varied between 4 and 28 ns at three different vertical chromaticity settings. The beam dynamics of the stored beam, in the presence of the electron cloud, was quantified using: 1) a gated Beam Position Monitor (BPM) and spectrum analyzer to measure the bunch-by-bunch frequency spectrum of the bunch trains; 2) an x-ray beam size monitor to record the bunch-by-bunch, turn-by-turn vertical size of each bunch within the trains. In this paper we report on the observations from these experiments and analyze the effects of the electron cloud on the stability of bunches within these different trains.
 
 
TUPWA063 Dependence of Vertical Beam Dynamics Influenced by Electron Clouds at CesrTA on Variations in Bunch Spacing and Vertical Chromaticity 1847
 
  • R. Holtzapple, R.F. Campbell, E.L. Holtzapple
    CalPoly, San Luis Obispo, California, USA
  • M.G. Billing, K.R. Butler, G. Dugan, M.J. Forster, B.K. Heltsley, G. Ramirez, N.T. Rider, J.P. Shanks, K.G. Sonnad
    CLASSE, Ithaca, New York, USA
  • J.W. Flanagan
    KEK, Ibaraki, Japan
 
  Funding: Work supported by DOE Award DE-FC02-08ER41538, NSF Award PHY-0734867, PHY-1068662 and the Lepton Collider R&D Coop. Agreement: NSF Award PHY-1002467
Experiments have been performed on the Cornell Electron-Positron Storage Ring Test Accelerator (CesrTA) to probe the interaction of the electron cloud with a 2-Gev stored positron beam. The purpose of these experiments was to characterize the beam–electron cloud interactions by varying the vertical chromaticity and bunch spacing. These experiments were performed on a 30-bunch positron train, at a fixed current of 0.75mA/bunch, where the bunch spacing was varied between 4 and 28ns at three different vertical chromaticity settings. The vertical beam dynamics of the stored beam, in the presence of the electron cloud, was quantified using the x-ray beam size monitor (xBSM) that is used to measure the bunch-by-bunch, turn-by-turn vertical beam size of the bunch trains. In this paper, we report the results from these experiments and discuss the effects of the electron cloud on the CesrTA beam dynamics.