Author: Resta-López, J.
Paper Title Page
MOPME068 Feasibility Study of a 2nd Generation Smith-Purcell Radiation Monitor for the ESTB at SLAC 634
 
  • N. Fuster Martinez, A. Faus-Golfe, J. Resta-López
    IFIC, Valencia, Spain
  • H.L. Andrews
    LANL, Los Alamos, New Mexico, USA
  • F. Bakkali Taheri, R. Bartolini, G. Doucas, I.V. Konoplev, C. Perry, A. Reichold, S.R. Stevenson
    JAI, Oxford, United Kingdom
  • J. Barros, N. Delerue, M. Grosjean
    LAL, Orsay, France
  • V. Bharadwaj, C.I. Clarke
    SLAC, Menlo Park, California, USA
 
  The use of a radiative process such as the Coherent Smith-Purcell Radiation (CSPR) is a very promising non-invasive technique for the reconstruction of the time profile of relativistic electron bunches. Currently existing CSPR monitors do not have yet single-shot capability. Here we study the feasibility of using a CSPR based monitor for bunch length measurement at the End Station Test Beam (ESTB) at SLAC. The aim is to design a second-generation device with single-shot capability, and use it as a diagnostic tool at ESTB. Simulations of the spectral CSPR energy distribution and feasibility study have been performed for the optimization of the parameters and design of such a device.  
 
MOPME069 Multi-OTR System for Linear Colliders 637
 
  • J. Resta-López, A. Faus-Golfe
    IFIC, Valencia, Spain
  • J. Alabau-Gonzalvo, R. Apsimon, A. Latina
    CERN, Geneva, Switzerland
 
  We study the feasibility of using a multi-Optical Transition Radiation (mOTR) system for fast transverse emittance reconstruction and x-y coupling correction in the Ring to Main Linac (RTML) of the future linear colliders: ILC and CLIC. OTR monitors are mature and reliable diagnostic tools that could be very suitable for the setup and tuning of the machine in single-bunch mode. Here we study the requirements for a mOTR system adapted to the optical conditions and beam parameters of the RTML of both the ILC and CLIC.  
 
MOPWO023 Upgrade and Systematic Measurement Campaign of the ATF2 Multi-OTR System 933
 
  • A. Faus-Golfe, J. Alabau-Gonzalvo, C. Blanch Gutierrez, J. Resta-López
    IFIC, Valencia, Spain
  • J. Cruz, E. Marín, D.J. McCormick, G.R. White, M. Woodley
    SLAC, Menlo Park, California, USA
 
  A multi-Optical Transition Radiation (mOTR) system made of four stations is being used routinely since September 2011 for transverse beam size measurement and emittance reconstruction in the extraction line of ATF2, providing diagnostic support during the ATF2 tuning operation. Furthermore it is also an excellent tool for fast transverse coupling correction. Due to the compactness of the current design the system has an influence in the increase of the transverse emittance due to wakefield effects when a simultaneous measurement is made. To avoid this effect a new target holder and a new optics has been designed and implemented. In this paper we describe the present status of the ATF2 mOTR system, showing recent performance results, and hardware design improvements.  
 
MOPWO024 Design of the CLIC Pre-Main Linac Collimation System 936
 
  • R. Apsimon, A. Latina, D. Schulte, J.A. Uythoven
    CERN, Geneva, Switzerland
  • J. Resta-López
    IFIC, Valencia, Spain
 
  A main beam collimation system, upstream of the main linac, is essential to protect the linac from particles in the beam halo. The proposed system consists of an energy collimation (EC) system just after the booster linac near the start of the Ring-to-Main Linac (RTML) transfer line and an EC and betatron collimation (BC) system at the end of the RTML, just before the main linac. The design requirements are presented and the cleaning efficiency of the proposed systems is analysed for different design choices.  
 
WEPEA047 Dynamic Aperture Performance for Different Collision Optics Scenarios for the LHC Luminosity Upgrade 2609
 
  • M. Giovannozzi, R. De Maria, S.D. Fartoukh
    CERN, Geneva, Switzerland
  • A. Chancé, B. Dalena, J. Payet
    CEA/IRFU, Gif-sur-Yvette, France
  • K.M. Hock, M. Korostelev, A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
  • J. Resta-López
    IFIC, Valencia, Spain
 
  Funding: The HiLumi LHC Design Study is included in the HL-LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.
The ATS[1] optics solution for the HL-LHC offers the possibility of different collision optics, with a β* as small as 10 cm in both transverse planes, or with a β* aspect ratio of up to 4 pushing β* to even smaller value (5cm) in the parallel separation plane while relaxing it (20 cm) in the crossing plane. The latter configuration features two possible options for alternated orientations of the crossing plane in the two high luminosity insertions, both considered in this study. In this paper we study the impact of few selected field imperfection models of the new magnets foreseen for the upgrade through tracking simulations and scaling laws.
[1] S. Fartoukh, ‘’An Achromatic Telescopic Squeezing (ATS) Scheme for LHC Upgrade’’, in proceedings of IPAC11, p. 2088.