Author: Pulampong, T.
Paper Title Page
MOPEA066 Investigation and Test of the Possibility of Reducing the Emittance of the Diamond Storage Ring 234
 
  • B. Singh, M. Apollonio, R. Bartolini, E.C. Longhi
    Diamond, Oxfordshire, United Kingdom
  • R. Bartolini, T. Pulampong
    JAI, Oxford, United Kingdom
 
  Theoretical and experimental studies have been carried out at the Diamond Light Source to assess the possibility of reducing the emittance of the existing storage ring by means of a change to the optics. The optics solutions obtained so far using a Multi Objective Genetic Algorithm (MOGA) increase the dispersion and the horizontal beta function in the straight section. While the emittance can be reduced to 2.1 nm this optics is limited by the operation of high field superconducting wiggler devices. In this report we present details of the new optics and present results of practical tests. We also compare the theoretical emittance growth due to a wiggler in a dispersive region with test results.  
 
MOPEA067 Ultra-low Emittance Upgrade Options for Third Generation Light Sources 237
 
  • R. Bartolini
    Diamond, Oxfordshire, United Kingdom
  • T. Pulampong
    JAI, Oxford, United Kingdom
 
  The increasing efforts in the synchrotron light sources community toward the design of a diffraction limited source at multi-keV photon energy have eventually stimulated the existing facilities to investigate possible upgrade paths to higher photon brightness and lower emittances to maintain their competitiveness within the users’ community. We present a possible option for upgrading 3rd generation light sources based on a rebiuld of the arcs with MBA cells, using diamond as an example. Emphasis is given to the AP desing issues with a view to minimal changes to the machine layout, contained cost and minimal downtime  
 
MOPEA068 Novel Lattice Upgrade Studies for Diamond Light Source 240
 
  • R. Bartolini, C.P. Bailey, M.P. Cox, N.P. Hammond, J. Kay, R.P. Walker
    Diamond, Oxfordshire, United Kingdom
  • R. Bartolini, T. Pulampong
    JAI, Oxford, United Kingdom
 
  Many synchrotron radiation facilities are studying lattice upgrades in order to lower the natural emittance and hence increase the radiation brightness. At Diamond we are pursuing a novel alternative, not targeting the minimum possible emittance but instead introducing additional insertion device (ID) straights and hence increasing the capacity of the facility, while still possibly achieving a more limited reduction in emittance. The new scheme involves converting some of the DBA lattice cells into a double-DBA or DDBA, with a new ID straight between the two achromats. This then allows existing or future bending magnet ports (which in Diamond are taken from near the entrance to the second dipole of the DBA lattice) to be served by a much more powerful insertion device. We present here the design concept and preliminary lattice design, and discuss the challenging magnet, vacuum and engineering issues.  
 
WEPWA065 A Non-linear Injection Kicker for Diamond Light Source 2268
 
  • T. Pulampong, R. Bartolini
    JAI, Oxford, United Kingdom
  • R. Bartolini
    Diamond, Oxfordshire, United Kingdom
 
  Ultra-low emittance lattices will operate with reduced dynamics apertures. New injection schemes are currently investigated in order to guarantee sufficient injection efficiency. A promising candidate is a pulsed kicker with a nonlinear magnetic field. The studies presented in this paper prove that this kicker allows injection with reduced dynamic aperture and provide minimal perturbation of the stored beam during Top-Up injection. Plans to install such a device at the Diamond light source are outlined.