Author: Polyansky, A.
Paper Title Page
MOPEA053 Status of NSLS-II Booster 196
 
  • S.M. Gurov, A.I. Erokhin, S.E. Karnaev, V.A. Kiselev, E.B. Levichev, A. Polyansky, A.M. Semenov, S.V. Shiyankov, S.V. Sinyatkin, V.V. Smaluk
    BINP SB RAS, Novosibirsk, Russia
  • H.-C. Hseuh, T.V. Shaftan
    BNL, Upton, Long Island, New York, USA
 
  The National Synchrotron Light Source II is a third generation light source under construction at Brookhaven National Laboratory. The project includes a highly optimized 3 GeV electron storage ring, linac pre-injector and full-energy injector-synchrotron. Budker Institute of Nuclear Physics build booster for NSLS-II. The booster should accelerate the electron beam continuously and reliably from a minimum 170 MeV injection energy to a maximum energy of 3.15 GeV and average beam current of 20 mA. The booster shall be capable of multi-bunch and single bunch operation. Pre-comissioning test results of booster components and system are reviewed.  
 
THPME030 Magnetic Measurement Results of the NSLS-II Booster Dipole Magnets 3573
 
  • S.V. Sinyatkin, G.N. Baranov, A.M. Batrakov, P.N. Burdin, D.B. Burenkov, S.M. Gurov, V.A. Kiselev, V.V. Kobets, E.B. Levichev, I.N. Okunev, A. Polyansky, Yu.A. Pupkov, L.E. Serdakov, P. Vobly
    BINP SB RAS, Novosibirsk, Russia
 
  Focusing and defocusing dipole magnets for NSLS-II 3 GeV booster are designed, manufactured and measured in BINP, Russia. Magnetic measurements of 32 BD and 28 BF magnets are made by BINP. In this paper the results of magnetic measurements of dipoles magnets in the field area of 0.638 – 11.829 kGs for BD type and 0.260 - 4.829 kGs for BF type are given. Analysis and comparison with magnetic field simulation are made.  
 
THPME032 Magnetic Measurement of the NSLS-II Booster Dipole with Combine Functions 3579
 
  • I.N. Okunev, G.N. Baranov, A.M. Batrakov, P.N. Burdin, D.B. Burenkov, V.V. Kobets, A. Polyansky, L.E. Serdakov, S.V. Sinyatkin
    BINP SB RAS, Novosibirsk, Russia
 
  The magnetic system of NSLS II Booster are designed, manufactured and tested in BINP, Russia. The dipoles of the Booster have quadrupole and sextupole components and should create high quality of field ± 2·10-4 in region ± 2 cm. Magnets should provide performance of booster for energy from 170 MeV to 3.15 GeV with 2 Hz frequency. To measure multipole field components one need to know accurate position of the probes in 3D coordinates. This report considers description of the magnetic measurement stand and achived accuracy for DC case.