Author: Oide, K.
Paper Title Page
TUPME014 Coherent Synchrotron Radiation Predicted at the SuperKEKB Damping Ring 1595
 
  • H. Ikeda, M. Kikuchi, K. Ohmi, K. Oide, D. Zhou
    KEK, Ibaraki, Japan
 
  The damping ring of SuperKEKB is under construction in order to inject low emittance positron beam into the main ring. We calculated the bunch lengthening and the energy spread caused by the longitudinal wake, which is dominated by the CSR wake field. The result was within the tolerance level.  
 
TUPME016 Crosstalk Between Beam-beam Interaction and Lattice Nonlinearities in the SuperKEKB 1601
 
  • D. Zhou, K. Ohmi, Y. Ohnishi, K. Oide, H. Sugimoto
    KEK, Ibaraki, Japan
 
  Momentum-dependent lattice nonlinearities have been proven to be important for the luminosity performance in the KEKB B-factory. As an upgrade of KEKB, the SuperKEKB adopts nano-beam scheme, in which the colliding beams are squeezed to extremely small sizes at the interaction point. Consequently, the lattice nonlinearities in SuperKEKB become more stronger than in KEKB. Using two codes, SAD and BBWS, we did various simulations to study the crosstalk between beam-beam interaction and lattice nonlinearities. It is found that lattice nonlinearities can cause remarkable luminosity loss in the SuperKEKB.  
 
TUPME017 Validation of the Microwave Instability in the Damping Ring of SuperKEKB using VFP Solver 1604
 
  • L. Wang
    SLAC, Menlo Park, California, USA
  • H. Ikeda, K. Ohmi, K. Oide, D. Zhou
    KEK, Ibaraki, Japan
 
  Microwave instability driven by CSR impedance in the damping ring of Super-KEKB is a concern due to its high bunch current. To understand the beam dynamics, we simulate the microwave instability using Vlasov-Fokker-Planck (VFP) solver. The longitudinal wake potential is calculated as a sum of the contributions due to vacuum chamber components distributed around the ring, including geometry wake field and CSR wake. To improve the accuracy of the simulation of microwave instability, the coherent synchrotron radiation impedance is calculated to very high frequency to get more accurate wake field with a short bunch. The CSR wake is much larger than the geometry wake. The threshold is just above the design current and saw-tooth type of instability is found above the threshold.