Author: Ogawa, Y.
Paper Title Page
MOPFI018 Design Study of a New Large Aperture Flux Concentrator 318
  • L. Zang, M. Akemoto, S. Fukuda, K. Furukawa, T. Higo, K. Kakihara, T. Kamitani, Y. Ogawa, H. Someya, T. Takatomi
    KEK, Ibaraki, Japan
  For high luminosity electron-positron colliders, intense positron beam production is one of the key issues. Flux Concentrator (FC) is a pulsed solenoid that can generate high magnetic field of several Tesla and is often used for focusing positrons emerged from a production target. It works as an optical matching device in a positron capture section. With this device, high capture efficiency is achieved. In this paper, we will introduce a new design of a FC for the SuperKEKB positron source. The advantages of the new design are: 1. the aperture could be doubled of the previous design, 2. the transverse components are only 1/10 of the previous design, 3. maintain the same high peak longitudinal field. The new FC modeling has been done in CST Studio and we will report the results of new FC field evaluation. In order to calculate the positron yield and capture efficiency, a tracking simulation to the end of capture section has also been carried out, which is also included in this paper.  
TUOCB103 Quasi Traveling Wave Side Couple RF Gun for SuperKEKB 1117
  • T. Natsui, Y. Ogawa, M. Yoshida, X. Zhou
    KEK, Ibaraki, Japan
  We are developing a new RF gun for SuperKEKB. High charge low emittance electron and positron beams are required for SuperKEKB. We will generate 7.0 GeV electron beam at 5 nC 20 mm-mrad by J-linac. In this linac, a photo cathode S-band RF gun will be used as the electron beam source. For this reason, we are developing an advanced RF gun. We have tested a Disk and Washer (DAW) type RF gun. Additionally, another new RF gun which has two side coupled standing wave field is developed. We call it quasi traveling wave side couple RF gun. This gun has a strong focusing field at the cathode and the acceleration field distribution also has a focusing effect. The design of RF gun and experimental results will be shown.  
slides icon Slides TUOCB103 [2.959 MB]  
TUPFI004 Longitudinal Manipulation to Obtain and Keep the Low Emittance and High Charge Electron Beam for SuperKEKB Injector 1337
  • M. Yoshida, N. Iida, T. Natsui, Y. Ogawa, S. Ohsawa, H. Sugimoto, L. Zang, X. Zhou
    KEK, Ibaraki, Japan
  The design strategy of SuperKEKB is based on the.nano-beam scheme. The dynamic aperture decreases due to the very small beta function at the interaction point. Thus the injector upgrade is required to obtain the low emittance and high charge beam corresponding to the short beam life and small injection acceptance. The required beam parameters are 5 nC, 20 mm mrad and 4 nC, 6 mm mrad for the electron and positron respectively. For the electron beam, we installed new photocathode RF-Gun with the focusing electric field and temporal adjusting laser system. Further the projected emittance dilution in the LINAC is an important issue for the low emittance injection. The longitudinal bunch length and shape is an important key to avoid the space charge effect and emittance dilution. The longitudinal manipulation using the temporal adjusting laser system and the bunch compression will be presented. Further the longitudinal bunch measurement will be also presented.  
TUPME010 High-intensity and Low-emittance Upgrade of 7-GeV Injector Linac towards SuperKEKB 1583
  • K. Furukawa, M. Akemoto, D.A. Arakawa, Y. Arakida, A. Enomoto, S. Fukuda, H. Honma, R. Ichimiya, N. Iida, M. Ikeda, E. Kadokura, K. Kakihara, T. Kamitani, H. Katagiri, M. Kurashina, S. Matsumoto, T. Matsumoto, H. Matsushita, S. Michizono, K. Mikawa, T. Miura, F. Miyahara, T. Mori, H. Nakajima, K. Nakao, T. Natsui, Y. Ogawa, S. Ohsawa, F. Qiu, M. Satoh, T. Shidara, A. Shirakawa, H. Sugimoto, T. Suwada, T. Takatomi, T. Takenaka, M. Tanaka, Y. Yano, K. Yokoyama, M. Yoshida, L. Zang, X. Zhou
    KEK, Ibaraki, Japan
  • D. Satoh
    TIT, Tokyo, Japan
  After a decade of successful operation at KEKB a new electron/positron collider, SuperKEKB, is being constructed to commission within FY2014. It aims at a luminosity of 8 x 1035 /s.cm2, 40-times higher than that of KEKB, in order to study the flavor physics of elementary particles further, by mainly squeezing the beams at the collision point. The injector linac should provide high-intensity and low-emittance beams of 7-GeV electron and 4-GeV positron by newly installing a RF-gun, a flux concentrator, and a damping ring with careful emittance and energy management. It also have to perform simultaneous top-up injections into four storage rings by pulse-to-pulse beam modulations not to interfare between three facilities of SuperKEKB, Photon Factory and PF-AR. This paper describes the injector design decisions and present status of the construction.  
WEPME018 Ytterbium Laser Development of DAW RF Gun for SuperKEKB 2965
  • X. Zhou, T. Natsui, Y. Ogawa, M. Yoshida
    KEK, Ibaraki, Japan
  For obtaining higher luminosity in the SuperKEKB, the photocathode RF electron gun with strong electric focusing field for high-current, low-emittance beams will be employed in the injector linac. The electron beams with a charge of 5 nC and a normalized emittance of 10 μm are expected to be generated in the photocathode RF gun by using the laser source with a center wavelength of 260 nm and a pulse width of 30 ps. Furthermore, for reducing the emittance, the laser pulse width should be reshaped from Gaussian to rectangle structure. Therefore, Ytterbium (Yb)-doped laser system that provides broader bandwidth, higher amplify efficiency and higher output power is employed. The laser system starts with a large mode-area Yb-doped fiber-based amplifier system, which consists of a passively mode-locked femtosecond Yb-fiber oscillator and two steps Yb-fiber amplifier. To obtain the several 10mJ-class pulse energy, a Yb:YAG thin-disk regenerative solid-state amplifier is employed. Deep UV pulses for the photocathode are generated by using two frequency-doubling stages. High pulse energy and good stability would be expected.  
THPEA007 Upgrade of Safety Interlock System of e+/e Linac for SuperKEKB Project 3161
  • A. Shirakawa, H. Honma, Y. Ogawa
    KEK, Ibaraki, Japan
  The upgrade of e+/e Injector Linac is going on for SuperKEKB project. The personal interlock system of the Linac has been upgrading several times according to the upgrade phase. One of the biggest changes has been made when the Linac was divided into two areas: upstream and downstream linacs, which allows us to work out the upgrade even during injection to Photon Factories at lower energies using the downstream linac. Most of the interlock system devices were duplicated to start the 'half' accelerator operation. Another remarkable update is to adopt an RF-Gun as a new electron source. We programmed a specific strong logic for the RF-Gun operation. These upgrades will be reported with the introduction of the whole interlock system.