Author: McAteer, M.J.
Paper Title Page
MOPME076 Determination of Octupole and Sextupole Polarities in the LHC 655
 
  • M.J. McAteer, Y.I. Levinsen, E.H. Maclean, T. Persson, P. Skowroński, R.J. Steinhagen, R. Tomás
    CERN, Geneva, Switzerland
 
  We report the results of measurements to verify the polarity of the LHC’s lattice focusing and defocusing octupoles (MOF and MOD), spool piece octupole correctors (MCO), arc skew sextupole correctors (MSS), and interaction region sextupoles (MCSX and MCSSX). Octupole polarities were determined by measuring the change to second order chromaticity when a magnet family was trimmed. The MSS skew sextupole corrector polarities were checked by measuring the change to chromatic coupling when a magnet family was trimmed. The polarities of the MCSSX skew sextupoles in IR 1 and the MCSX normal sextupoles in IR 5 were checked by measuring the tune shift due to a magnet trim. Comparison of measurements with model predictions indicates that the polarities of the octupoles and the IR sextupoles are correct, and the polarities of the MSS skew sextupole correctors are reversed.  
 
TUPFI041 Operating the LHC Off-momentum for p-Pb Collisions 1439
 
  • R. Versteegen, R. Bruce, J.M. Jowett, A. Langner, Y.I. Levinsen, E.H. Maclean, M.J. McAteer, T. Persson, S. Redaelli, B. Salvachua, P. Skowroński, M. Solfaroli Camillocci, R. Tomás, G. Valentino, J. Wenninger
    CERN, Geneva, Switzerland
  • E.H. Maclean
    JAI, Oxford, United Kingdom
  • M.J. McAteer
    The University of Texas at Austin, Austin, USA
  • T. Persson
    Chalmers University of Technology, Chalmers Tekniska Högskola, Gothenburg, Sweden
  • G. Valentino
    University of Malta, Information and Communication Technology, Msida, Malta
  • S.M. White
    BNL, Upton, Long Island, New York, USA
 
  The first high-luminosity p-Pb run at the LHC took place in January-February 2013 at an energy of 4 Z TeV per beam. The RF frequency difference of proton and Pb is about 60 Hz for equal magnetic rigidities, which means that beams move slightly to off-momentum, non-central, orbits during physics when frequencies are locked together. The resulting optical perturbations ("beta-beating") restrict the available aperture and required a special correction. This was also the first operation of the LHC with low beta in all four experiments and required a specific collimation set up. Predictions from offline calculations of beta-beating correction are compared with measurements during the optics commissioning and collimator set up.  
 
TUPWO047 Preliminary Results of Linear Optics From Orbit Response in the CERN PSB 1973
 
  • M.J. McAteer, C. Carli, B. Mikulec, R. Tomás
    CERN, Geneva, Switzerland
  • M. Aiba
    PSI, Villigen PSI, Switzerland
 
  Funding: This research project is supported by a Marie Curie Early Initial Training Network Fellowship of the European Community's Seventh Framework Programme under contract number (PITN-GA-2011-289485-OPAC)
Future operations for the CERN accelerator complex will require the PS Booster to deliver higher intensity beam without increasing emittances, and having an accurate knowledge of the machine’s lattice imperfections will be necessary. We present preliminary results of the analysis of orbit response measurements in the PS Booster to determine the linear optics and to identify field errors in each of the machine’s four rings.
 
 
TUPWO049 Automatic Correction of Betatron Coupling in the LHC using Injection Oscillations 1979
 
  • T. Persson, T. Bach, D. Jacquet, V. Kain, Y.I. Levinsen, E.H. Maclean, M.J. McAteer, P. Skowroński, R. Tomás, G. Vanbavinckhove
    CERN, Geneva, Switzerland
  • R. Miyamoto
    ESS, Lund, Sweden
 
  The control of the betatron coupling at injection and during the energy ramp is critical for the safe operation of the tune feedback and for the dynamic aperture. In the LHC every fill is preceded by the injection of a pilot bunch with low intensity. Using the injection oscillations from the pilot bunch we are able to measure the coupling at each individual BPM. The measurement is used to calculate a global coupling correction. The correction is based on the use of two orthogonal knobs which correct the real and imaginary part of the difference resonance term f1001, respectively. This method to correct the betatron coupling has been proven successful during the normal operation of the LHC. This paper presents the method used to calculate the corrections and its performance.  
 
TUPFI039 Optics Performance of the LHC During the 2012 Run 1433
 
  • P. Skowroński, T. Bach, M. Giovannozzi, A. Langner, Y.I. Levinsen, E.H. Maclean, T. Persson, S. Redaelli, T. Risselada, M. Solfaroli Camillocci, R. Tomás, G. Vanbavinckhove
    CERN, Geneva, Switzerland
  • M.J. McAteer
    The University of Texas at Austin, Austin, USA
  • R. Miyamoto
    ESS, Lund, Sweden
  • T. Persson
    Chalmers University of Technology, Chalmers Tekniska Högskola, Gothenburg, Sweden
 
  During 2012 the LHC was operating at 4TeV with beta star at ATLAS and CMS interaction points of 0.6m. During dedicated machine studies the nominal LHC optics was also setup with beta star of 0.4m. A huge effort was put into the optics commissioning leading to a record low peak beta-beating of around 7%. We describe the correction procedures and discuss the measurement results.  
 
TUPFI041 Operating the LHC Off-momentum for p-Pb Collisions 1439
 
  • R. Versteegen, R. Bruce, J.M. Jowett, A. Langner, Y.I. Levinsen, E.H. Maclean, M.J. McAteer, T. Persson, S. Redaelli, B. Salvachua, P. Skowroński, M. Solfaroli Camillocci, R. Tomás, G. Valentino, J. Wenninger
    CERN, Geneva, Switzerland
  • E.H. Maclean
    JAI, Oxford, United Kingdom
  • M.J. McAteer
    The University of Texas at Austin, Austin, USA
  • T. Persson
    Chalmers University of Technology, Chalmers Tekniska Högskola, Gothenburg, Sweden
  • G. Valentino
    University of Malta, Information and Communication Technology, Msida, Malta
  • S.M. White
    BNL, Upton, Long Island, New York, USA
 
  The first high-luminosity p-Pb run at the LHC took place in January-February 2013 at an energy of 4 Z TeV per beam. The RF frequency difference of proton and Pb is about 60 Hz for equal magnetic rigidities, which means that beams move slightly to off-momentum, non-central, orbits during physics when frequencies are locked together. The resulting optical perturbations ("beta-beating") restrict the available aperture and required a special correction. This was also the first operation of the LHC with low beta in all four experiments and required a specific collimation set up. Predictions from offline calculations of beta-beating correction are compared with measurements during the optics commissioning and collimator set up.