Author: Luo, Y.T.
Paper Title Page
MOPFI033 Commissioning Results and Progress of a Helium Injector for Coupled RFQ and SFRFQ Project at Peking University 357
 
  • J. Chen, J.E. Chen, S.L. Gao, Z.Y. Guo, Y.T. Luo, S.X. Peng, H.T. Ren, Z. Wang, Z.H. Wang, W.L. Xia, Y. Xu, A.L. Zhang, T. Zhang, J. Zhao
    PKU, Beijing, People's Republic of China
 
  At Peking University (PKU) a new helium injector for coupled radio frequency quadrupole(RFQ) and separated function radio frequency quadrupole(SFRFQ) within one cavity, so called as coupled RFQ & SFRFQ, was designed recently*. It will provide a 30keV 20mA He+ beam whose emittance is less than 0.15 π.mm.mrad for the accelerator. It is a combination of a 2.45GHz PKU PMECRIS (Permanent Magnet ECRIS) and a 1.16 m long LEBT. Within the 1.16 m LEBT, 2 solenoids, 2 steering magnets, a kicker, a space charge compensation section, a collimator, two vacuum valves, a Faraday cup and an ACCT are installed. The manufacture has been completed and the commissioning is on the way. In this paper we will address the commissioning results and its progress.
* Haitao Ren, et al., A Helium Injector for Coupled RFQ and SFRFQ Cavity Project at Peking University. Proc. LINAC’12, Paper TUPB034, Israel, 2012
 
 
MOPFI035 Preliminary Results of H2+ Beam Generated by a 2.45 GHz Permanent Magnet ECR Ion Source at PKU 363
 
  • Y. Xu, J. Chen, J.E. Chen, Z.Y. Guo, Y.T. Luo, S.X. Peng, H.T. Ren, Z.H. Wang, T. Zhang, J. Zhao
    PKU, Beijing, People's Republic of China
  • A.L. Zhang
    Graduate University, Chinese Academy of Sciences, Beijing, People's Republic of China
 
  Recently, the need to build an ion source generating high current hydrogen molecular ion H2+ beam has been growing rapidly. For example, H2+ ion can be used as a pilot beam of the intense deuteron beam during the commission phase of linear accelerators to minimize the activation of components. And it is an effective way to improve the output current of cyclotrons by accelerating H2+ and stripping it into H+ at the exit of accelerator, instead of accelerating H+ beam directly. To obtain high-yield H2+ ion beam, experimental and theoretical study was carried out on the 2.45 GHz Peking University permanent magnet electron cyclotron resonance ion source (PKU PMECR). With PMECR II*, studies on the size of discharge chamber and the operation pressure were carried out to increase H2+ ion fraction. Beam analysis results prove that the H2+ can reach 40.5% with suitable operation parameters. More details will be presented in this paper.
* Zhizhong Song, Shixiang Peng et al., Rev. Sci. Instrum. 77, 03A305 (2006)
** Author to whom correspondence should be addressed. Electronic mail:
sxpeng@pku.edu.cn.
 
 
MOPWO014 Numerical Methods to the Space Charge Compensation (SCC) Effect of the LEBT Beam 915
 
  • S.X. Peng, J. Chen, J.E. Chen, Z.Y. Guo, P.N. Lu, Y.T. Luo, H.T. Ren, Z.H. Wang, Y. Xu, T. Zhang, J. Zhao
    PKU, Beijing, People's Republic of China
  • A.L. Zhang
    Graduate University, Chinese Academy of Sciences, Beijing, People's Republic of China
 
  Numerical simulation as well as experimental researches on space charge compensation for high intensity, low energy ion beam has been done at Peking University (PKU). In this paper we will describe the simulation model proposed at PKU and use it on the PKU ECR single-charged ion source. It consists of a new concept of equivalent density and more consideration of physical process. A series of arithmetical equations is gained through theoretical derivation. Although no numerical solutions have been carried out from our computation, it is foreseeable that the final result will be achieved soon.