Author: Lillestol, R.L.     [Lillestøl, R.L.]
Paper Title Page
TUPFI040 Experimental Verification of the CLIC Two-Beam Acceleration Technology in CTF3 1436
 
  • P. Skowroński, A. Andersson, J. Barranco, B. Constance, R. Corsini, S. Döbert, A. Dubrovskiy, W. Farabolini, E. Ikarios, R.L. Lillestøl, T. Persson, F. Tecker
    CERN, Geneva, Switzerland
  • W. Farabolini
    CEA/DSM/IRFU, France
  • E. Ikarios
    National Technical University of Athens, Athens, Greece
  • M. Jacewicz, A. Palaia, R.J.M.Y. Ruber
    Uppsala University, Uppsala, Sweden
  • R.L. Lillestøl
    University of Oslo, Oslo, Norway
  • T. Persson
    Chalmers University of Technology, Chalmers Tekniska Högskola, Gothenburg, Sweden
 
  The Compact Linear Collider (CLIC) International Collaboration is pursuing an extensive R&D program towards a multi-TeV electron-positron collider. In particular, the development of two beam acceleration technology is the focus of the CLIC test facility CTF3. In this paper we summarize the most recent results obtained at CTF3: the results of the studies on the drive beam generation are presented, the achieved two beam acceleration performance is reported and the measured break-down rates and related observations are summarized. The stability of deceleration process performed over 13 subsequent modules and the comparison of the obtained results with the theoretical expectations are discussed. We also outline and discuss the future experimental program.  
 
TUPWA045 Longitudinal Space Charge Effects in the CLIC Drive Beam 1811
 
  • R.L. Lillestøl, S. Döbert, A. Latina, D. Schulte
    CERN, Geneva, Switzerland
  • E. Adli, K.N. Sjobak
    University of Oslo, Oslo, Norway
 
  The CLIC main beam is accelerated by rf power generated from a high-intensity, low-energy electron drive beam. The accelerating fields are produced in Power Extraction and Transfer Structures, and are strongly dependent on the drive beam bunch distribution, as well as other parameters. We investigate how longitudinal space charge affects the bunch distribution and the corresponding power production, and discuss how the bunch length evolution can affect the main beam. We also describe the development of a Particle-in-Cell space charge solver which was used for the study.  
 
TUPWA046 Experimental Results from the Test Beam Line in the CLIC Test Facility 3 1814
 
  • R.L. Lillestøl, S. Döbert, M. Olvegård
    CERN, Geneva, Switzerland
  • E. Adli
    University of Oslo, Oslo, Norway
 
  In the CLIC two-beam scheme, the main beam is accelerated by rf power provided by energy extraction from a secondary drive beam. This energy is extracted in decelerators, and the first prototype decelerator is the Test Beam Line in the CLIC Test Facility 3. The line is currently equipped with 12 Power Extraction and Transfer Structures (PETS), which allows for extracting up to 40% of the beam energy. We correlate the measured deceleration with predictions from the beam current and the rf power produced in the PETS. We also discuss recent bunch length measurements and how it influences the deceleration. Finally we look at the evolution of the transverse emittance.