Author: Lane, P.G.
Paper Title Page
WEPFI074 RF Cavity Spark Localization Using Acoustic Measurement 2863
 
  • P. Snopok
    IIT, Chicago, Illinois, USA
  • A.D. Bross
    Fermilab, Batavia, USA
  • P.G. Lane, Y. Torun
    Illinois Institute of Technology, Chicago, IL, USA
 
  Current designs for muon cooling channels require high-gradient RF cavities to be placed in solenoidal magnetic fields in order to contain muons with large transverse emittances. It has been found that doing so reduces the threshold at which RF cavity breakdown occurs. To aid the effort to study RF cavity breakdown in magnetic fields it would be helpful to have a diagnostic tool which can detect breakdown and localize the source of the breakdown inside the cavity. We report here on progress towards developing a diagnostic tool for detecting and localizing sparks in an RF cavity by using piezoelectric transducers.