Author: Kowalska, M.
Paper Title Page
MOPFI050 Non-local Fast Extraction from the CERN SPS at 100 and 440 GeV 392
 
  • F.M. Velotti, A. Alekou, W. Bartmann, E. Carlier, K. Cornelis, I. Efthymiopoulos, B. Goddard, L.K. Jensen, V. Kain, M. Kowalska, V. Mertens, R. Steerenberg
    CERN, Geneva, Switzerland
 
  The Long Straight Section 2 (LSS2) of the CERN SPS is connected with the North Area (NA), to which the beam to date has always been extracted using a resonant extraction technique. For new proposed short- and long-baseline neutrino experiments, a fast single turn extraction to this experimental area is required. As there are no kickers in LSS2, and the integration of any new kickers with the existing electrostatic septum would be problematic, a solution has been developed to fast extract the beam using non-local extraction with other SPS kickers. Two different kicker systems have been used, the injection kicker in LSS1 and the stronger extraction kicker in LSS6 to extract 100 and 440 GeV beam, respectively. For both solutions a large emittance beam was extracted after 5 or 9 full betatron periods. The concept and simulation details are presented with the analysis of the aperture and beam loss considerations and experimental results collected during a series of beam tests.  
 
MOPFI055 Design Study of a 100 GeV Beam Transfer Line from the SPS for a Short Baseline Neutrino Facility 407
 
  • W. Bartmann, B. Goddard, A. Kosmicki, M. Kowalska, F.M. Velotti
    CERN, Geneva, Switzerland
 
  A Short Baseline neutrino facility at CERN is presently under study. It is considered to extract a 100 GeV beam from the second long straight section of the SPS into the existing transfer channel TT20, which leads to the North Area experimental zone. A new transfer line would branch off the existing TT20 line around 600 m downstream of the extraction, followed by an S-shaped horizontal bending arc to direct the beam with the correct angle onto the defined target location. This paper describes the optimisation of the line geometry with respect to the switch regions in TT20, the integration into the existing facilities and the potential refurbishment of existing magnets. The optics design is shown, and the requirements for the magnets, power converters and instrumentation hardware are discussed.