Author: Kosmicki, A.
Paper Title Page
MOPFI055 Design Study of a 100 GeV Beam Transfer Line from the SPS for a Short Baseline Neutrino Facility 407
  • W. Bartmann, B. Goddard, A. Kosmicki, M. Kowalska, F.M. Velotti
    CERN, Geneva, Switzerland
  A Short Baseline neutrino facility at CERN is presently under study. It is considered to extract a 100 GeV beam from the second long straight section of the SPS into the existing transfer channel TT20, which leads to the North Area experimental zone. A new transfer line would branch off the existing TT20 line around 600 m downstream of the extraction, followed by an S-shaped horizontal bending arc to direct the beam with the correct angle onto the defined target location. This paper describes the optimisation of the line geometry with respect to the switch regions in TT20, the integration into the existing facilities and the potential refurbishment of existing magnets. The optics design is shown, and the requirements for the magnets, power converters and instrumentation hardware are discussed.  
TUPEA051 Beam Transfer Line Design for a Plasma Wakefield Acceleration Experiment (AWAKE) at the CERN SPS 1247
  • C. Bracco, J. Bauche, D. Brethoux, V. Clerc, B. Goddard, E. Gschwendtner, L.K. Jensen, A. Kosmicki, G. Le Godec, M. Meddahi, C. Mutin, J.A. Osborne, K.D. Papastergiou, A. Pardons, F.M. Velotti, H. Vincke
    CERN, Geneva, Switzerland
  • P. Muggli
    MPI, Muenchen, Germany
  The world’s first proton driven plasma wakefield acceleration experiment is presently being studied at CERN. The experiment will use a high energy proton beam extracted from the SPS as driver. Two possible locations for installing the AWAKE facility are considered: the West Area and the CNGS long baseline beam-line. The previous transfer line from the SPS to the West Area was completely dismantled in 2000 and it would need to be fully re-designed and re-built. For this option, geometric constraints for radio protection reasons would limit the maximum proton beam energy to 300 GeV. The existing CNGS line could be used by applying only minor changes to the final part of the lattice for the final focusing and the interface between the proton beam and the laser, required for plasma ionisation and bunch-modulation seeding. The beam line design studies performed for the two options are presented.  
THPFI056 Design Study for a Future LAGUNA-LBNO Long-baseline Neutrino Facility at CERN 3418
  • I. Efthymiopoulos, J. Alabau-Gonzalvo, A. Alekou, F. Antoniou, M. Benedikt, M. Calviani, A. Ferrari, R. Garoby, F. Gerigk, S.S. Gilardoni, B. Goddard, A. Kosmicki, C. Lazaridis, J.A. Osborne, Y. Papaphilippou, A.S. Parfenova, E.N. Shaposhnikova, R. Steerenberg, P. Velten, H. Vincke
    CERN, Geneva, Switzerland
  A design study for a long baseline neutrino oscillation experiment (LBNO) with a new conventional neutrino beamline facility (CN2PY) at CERN was initiated in September 2011, supported by EU/FP7 funds. The beam will be aimed at a next generation deep-underground neutrino observatory located at the Pyhasalmi (Finland) mine at a distance of 2300 km. In an initial phase the CN2PY facility will use a 400 GeV beam extracted from SPS up to a maximum power of 750 kW, and in a second phase a 2 MW beam of about 50 GeV produced by a new High-Power Proton Synchrotron accelerator using the LP-SPL as injector also under design. The paper will focus on the design challenges of this MW-class facility and on the optimization studies of the secondary beam elements (target and horns) to produce a neutrino beam spectrum that matches best the experimental requirements for neutrino flavor oscillations and CP-violation tests. The challenges and bottlenecks in the existing CERN accelerator complex to produce the high-intensity beams foreseen for this facility at the initial phase are discussed.