Author: Korostelev, M.
Paper Title Page
MOPWO063 LHeC IR Optics Design Integrated into the HL-LHC Lattice 1034
 
  • M. Korostelev, D. Newton, A. Wolski
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • O.S. Brüning, R. Tomás
    CERN, Geneva, Switzerland
  • E. Cruz Alaniz, D. Newton, A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
 
  The two main drivers for the CDR LHeC IR design were chromaticy and synchrotron radiation. Recently it has been proposed that the LHeC IR proton optics could be integrated into the ATS scheme, which benefits from higher arc beta functions for the correction of chromaticity. In this scenario the distance between the IP and the protron triplet can be increased allowing for a reduction of the IR dipole field and the synchrotron radiation. First feasibility considerations and more in depth studies of the synchrotron radiation effects are presented in this paper.  
 
TUPFI023 Optics Design and Lattice Optimisation for the HL-LHC 1385
 
  • B.J. Holzer, R. De Maria, S.D. Fartoukh
    CERN, Geneva, Switzerland
  • R. Appleby, S. Kelly, M.B. Thomas, L.N.S. Thompson
    UMAN, Manchester, United Kingdom
  • A.V. Bogomyagkov
    BINP SB RAS, Novosibirsk, Russia
  • A. Chancé
    CEA, Gif-sur-Yvette, France
  • B. Dalena
    CEA/IRFU, Gif-sur-Yvette, France
  • A. Faus-Golfe, J. Resta
    IFIC, Valencia, Spain
  • K.M. Hock, M. Korostelev, L.N.S. Thompson, A. Wolski
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • C. Milardi
    INFN/LNF, Frascati (Roma), Italy
  • J. Payet
    CEA/DSM/IRFU, France
  • A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Cap. Spec. Progr, Grant Agreement 284404.
The luminosity upgrade project of the LHC collider at CERN is based on a strong focusing scheme to reach smallest beam sizes at the collision points. Depending on the available magnet technology (Nb3Sn or NbTi) a number of beam optics has been developed to define the specifications for the new super conducting quadrupoles. In the context of the optics matching new issues have been addressed and new concepts have been used: Quadrupole strength flexibility and chromatic corrections have been studied, as well as the influence of quadrupole fringe fields. The lattice has been optimised including the needs of the foreseen crab cavities and the transition between injection and low β optics had to guarantee smooth gradient changes over a wide range of β* values. Tolerances on misalignments and power converter ripple have been re-evaluated. Finally the combination of the quadrupole strengths in the high luminosity matching sections with those in the neighboring sectors is explained, a key concept of the ATS to reach smallest β* values. This paper presents the results obtained within the HiLumi collaboration Task 2.2 and summarises the main parameters of the project.
 
 
TUPFI051 Optics Transition between Injection and Collision Optics for the HL-LHC Upgrade Project 1460
 
  • M. Korostelev, A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
  • R. De Maria, S.D. Fartoukh
    CERN, Geneva, Switzerland
  • M. Korostelev, A. Wolski
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: The HiLumi LHC Design Study is included in the HL-LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.
Plans for the luminosity upgrade of the LHC collider at CERN (HL-LHC) are based on implementation of magnets with larger apertures in the interaction regions, together with the ATS [*] technique to reach very low values of the beta function at the collision points. The transition from injection to collision optics will be carried out in two stages, and will involve varying the strengths of the quadrupoles within the straight sections. Solutions for the optics transition have to meet a variety of challenging constraints, including constraints on the phase advances and Twiss parameters throughout the straights involved in the transition, specified minimum and maximum strengths of the quadrupoles, etc. Moreover, to minimize the time taken for the transition, the variation of the quadrupole strengths should be as smooth as possible, especially for the strongest quadrupoles. Avoiding changes of slope as much as possible will also minimize hysteresis effects in the super-conducting matching quadrupoles participating to the process. This paper presents one possible solution for the optics transition, calculated for the HLLHCv1.0 version of the optics and layout of the HL-LHC.
* S. Fartoukh, "An Achromatic Telescopic Squeezing (ATS) Scheme for LHC Upgrade", in proceedings of IPAC11, p. 2088.
 
 
TUPFI014 HLLHCV1.0: HL-LHC Layout and Optics Models for 150 mm Nb3Sn Triplets and Local Crab-cavities 1358
 
  • R. De Maria, S.D. Fartoukh
    CERN, Geneva, Switzerland
  • A.V. Bogomyagkov
    BINP SB RAS, Novosibirsk, Russia
  • M. Korostelev
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: The HiLumi LHC Design Study is included in the HL-LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.
The paper presents the latest layout and optics models for the HL-LHC upgrade project. As an evolution from the previous version SLHCV3.1b, it integrates the new Nb3Sn triplet (140T/m, 150mm) with all the additional magnets needed to be compatible with a β* reach of 15cm and beyond. The collision optics implements the ATS* scheme which is able to provide very low value of β* and at the same time warrants outstanding control of the chromatic aberrations within the strength limits of the existing arc sextupole scheme of the LHC. The optics models include the injection and collision optics for proton and ion operations foreseen for the HL-LHC, with improved squeeze-ability of the existing IR2 and IR8 insertions, and all the corresponding optic transitions. An aperture model and a series of optics matched in thin lenses complete the needs for a large range of dedicated beam dynamic studies (dynamic aperture, beam-beam effects, collimation).
* S. Fartoukh, ‘’An Achromatic Telescopic Squeezing (ATS) Scheme for LHC Upgrade’’, in proceedings of IPAC11, p. 2088.
 
 
TUPFI051 Optics Transition between Injection and Collision Optics for the HL-LHC Upgrade Project 1460
 
  • M. Korostelev, A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
  • R. De Maria, S.D. Fartoukh
    CERN, Geneva, Switzerland
  • M. Korostelev, A. Wolski
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: The HiLumi LHC Design Study is included in the HL-LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.
Plans for the luminosity upgrade of the LHC collider at CERN (HL-LHC) are based on implementation of magnets with larger apertures in the interaction regions, together with the ATS [*] technique to reach very low values of the beta function at the collision points. The transition from injection to collision optics will be carried out in two stages, and will involve varying the strengths of the quadrupoles within the straight sections. Solutions for the optics transition have to meet a variety of challenging constraints, including constraints on the phase advances and Twiss parameters throughout the straights involved in the transition, specified minimum and maximum strengths of the quadrupoles, etc. Moreover, to minimize the time taken for the transition, the variation of the quadrupole strengths should be as smooth as possible, especially for the strongest quadrupoles. Avoiding changes of slope as much as possible will also minimize hysteresis effects in the super-conducting matching quadrupoles participating to the process. This paper presents one possible solution for the optics transition, calculated for the HLLHCv1.0 version of the optics and layout of the HL-LHC.
* S. Fartoukh, "An Achromatic Telescopic Squeezing (ATS) Scheme for LHC Upgrade", in proceedings of IPAC11, p. 2088.
 
 
WEPEA047 Dynamic Aperture Performance for Different Collision Optics Scenarios for the LHC Luminosity Upgrade 2609
 
  • M. Giovannozzi, R. De Maria, S.D. Fartoukh
    CERN, Geneva, Switzerland
  • A. Chancé, B. Dalena, J. Payet
    CEA/IRFU, Gif-sur-Yvette, France
  • K.M. Hock, M. Korostelev, A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
  • J. Resta-López
    IFIC, Valencia, Spain
 
  Funding: The HiLumi LHC Design Study is included in the HL-LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.
The ATS[1] optics solution for the HL-LHC offers the possibility of different collision optics, with a β* as small as 10 cm in both transverse planes, or with a β* aspect ratio of up to 4 pushing β* to even smaller value (5cm) in the parallel separation plane while relaxing it (20 cm) in the crossing plane. The latter configuration features two possible options for alternated orientations of the crossing plane in the two high luminosity insertions, both considered in this study. In this paper we study the impact of few selected field imperfection models of the new magnets foreseen for the upgrade through tracking simulations and scaling laws.
[1] S. Fartoukh, ‘’An Achromatic Telescopic Squeezing (ATS) Scheme for LHC Upgrade’’, in proceedings of IPAC11, p. 2088.