Author: Kirkman, I.W.
Paper Title Page
TUPWO054 Recent Results from the EMMA Experiment 1988
  • B.D. Muratori, J.K. Jones
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • R. Appleby, J.M. Garland, H.L. Owen
    UMAN, Manchester, United Kingdom
  • J.S. Berg, F. Méot
    BNL, Upton, Long Island, New York, USA
  • C.S. Edmonds, J.K. Jones, I.W. Kirkman, B.D. Muratori, A. Wolski
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • C.S. Edmonds, I.W. Kirkman, A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
  • D.J. Kelliher, S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • J. Pasternak
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  EMMA (Electron Model for Many Applications) is a prototype non-scaling electron FFAG hosted at Daresbury Laboratory. After a recent demonstration of acceleration in the serpentine channel, the injected EMMA beam was further studied. This entails the continuation of the exploration of the large transverse and longitudinal acceptance and the effects of slower integer tune crossing on the betatron amplitude. A single closed orbit correction that is effective at multiple momenta (and hence over a significant range in tune space) was implemented. A comparison with a detailed model based on measured field maps, and the experimental mapping of the machine by relating the initial and final phase space coordinates was also done. These recent results together with more practical improvements such as injection orbit matching with real-time monitoring of the coordinates in the transverse phase space will be reported in this paper.