Author: Kim, H.J.
Paper Title Page
TUPWO038 Start-to-end Simulations for Heavy-ion Accelerator of RISP 1958
 
  • E.-S. Kim, S.W. Jang
    KNU, Deagu, Republic of Korea
  • J. Bahng, J.G. Hwang
    Kyungpook National University, Daegu, Republic of Korea
  • B. Choi, D. Jeon, H.J. Kim, H.J. Kim
    IBS, Daejeon, Republic of Korea
 
  RAON has been designed as a facility for rare isotope accelerator at Korea. The aceelerator consists of 28 GHz superconducting ion source, LEBT, RFQ, MEBT, superconducting linac and HEBT. The linac accelerates ion beams to 200 MeV/u with a beam power of 400 kW. Start-to-End simulations are performed from ECR-IS to HEBT and the detailed beam simulation results are presented. The beam dynamics issues are also discussed.  
 
THPWO065 Optics Design and Correction of High Order Aberration of the Charge Stripper Beam Line of RAON 3906
 
  • H.J. Kim, D. Jeon, H.J. Kim
    IBS, Daejeon, Republic of Korea
  • J.G. Hwang, E.-S. Kim
    Kyungpook National University, Daegu, Republic of Korea
 
  RAON (Rare isotope Accelerator Of Newness) in Korea will be providing the 400 kW of 238U79+ beam with 8 puA and 200 MeV/u. One of the critical components of this project in the SCL is the design of the charge stripper. Between the two segments of the SCL, the charge stripper strips electrons from ion beams to enhance the acceleration efficiency in the following SCL2. For high efficiency of the acceleration and high power in SCL2, the optimum energy of striped ion in solid carbon foil stripper for SCL1 was estimated by using code LISE. The thickness of the solid carbon foil is 300 ug/m2. Based on this study, the charge stripping efficiency of solid carbon stripper is ~80 %. For the charge selection from ions which produced by the solid carbon stripper, the dispersive section is required in down-stream of the foil. The designed optics for dispersive section is based on the mirror-symmetric optics to minimize the effect of high-order aberration. And the high-order aberration in designed optics was investigated and performed the correction of high-order effect using sextupole magnets.