Author: Kim, D.T.
Paper Title Page
MOPME060 Introduction to Beam Diagnostics Components for PAL-ITF 610
  • H. J. Choi, M.S. Chae, J.H. Hong, C. Kim, D.T. Kim, S.J. Park
    PAL, Pohang, Kyungbuk, Republic of Korea
  Pohang Accelerator Laboratory (PAL) is building the 4th generation X-ray free electron laser (XFEL). The Injection Test Facility (ITF) is a test facility established to improve the functions of the laser gun and pre-injector to be installed in XFEL. To improve the effects of ITF, two factors are required. The first is to be able to generate low-emittance electron beams stably at the laser gun, and the second is to control increasing emittance by space charge effect by accelerating electron beams with high energy at the pre-injector. In this way, high-quality electron beams can be materialized. Various beam diagnostics are installed in the accelerator system for beam diagnostics and measurements. Five kinds of beam diagnostics were installed in the PAL-ITF. These are (1) ICT and (2) Faraday Cup to measure current and electrons charge, (3) Stripline BPM to measure the location of beams, (4) a YAG/OTR Screen Monitor to measure beam energy and transverse profile motion and (5) a Wire Scanner to measure beam size. In this paper, the purposes and properties of each diagnostic unit and measurement results are introduced.  
WEPWA043 Construction of Injector Test Facility (ITF) for the PAL XFEL 2220
  • S.J. Park, H. J. Choi, T. Ha, J.H. Han, J.H. Hong, W.H. Hwang, H.-S. Kang, T.-H. Kang, D.T. Kim, J.M. Kim, S.-C. Kim, I.S. Ko, B.H. Lee, H.-S. Lee, W.W. Lee, C.-K. Min, Y.J. Park, Y.G. Son
    PAL, Pohang, Kyungbuk, Republic of Korea
  • M.S. Chae
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  Funding: Work supported by the Ministry of Education, Science and Technology (MEST) in Korea.
An injector test facility (ITF) for the PAL-XFEL has been successfully constructed and its commissioning is under way. The facility is to demonstrate beam performances required by the PAL XFEL (beam energy of 139 MeV, projected rms emittance of < 0.5 mm mrad @ 200 pC, and beam repetition rate of 60 Hz) with good enough stabilities. We have constructed a dedicated building for the facility in which a radiation-shielding tunnel (19.2-m long, 3.5-m wide, and 2.4-m high inner space), a klystron-modulator gallery, a laser room, and a control room are installed. The injector consists of an in-house-developed photo-cathode rf gun, a 30-mJ Ti:Sa laser system, two accelerating structures (as well as two sets of klystron-modulator systems), and various diagnostics as well as magnets & instrumentations. The installation of a transverse deflecting cavity (S-band, 10-fs resolution) and a laser heater is scheduled in 2013. In this article we report on the facility construction and some of the early commisisoning results.