Author: Kim, C.
Paper Title Page
MOPME060 Introduction to Beam Diagnostics Components for PAL-ITF 610
 
  • H. J. Choi, M.S. Chae, J.H. Hong, C. Kim, D.T. Kim, S.J. Park
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Pohang Accelerator Laboratory (PAL) is building the 4th generation X-ray free electron laser (XFEL). The Injection Test Facility (ITF) is a test facility established to improve the functions of the laser gun and pre-injector to be installed in XFEL. To improve the effects of ITF, two factors are required. The first is to be able to generate low-emittance electron beams stably at the laser gun, and the second is to control increasing emittance by space charge effect by accelerating electron beams with high energy at the pre-injector. In this way, high-quality electron beams can be materialized. Various beam diagnostics are installed in the accelerator system for beam diagnostics and measurements. Five kinds of beam diagnostics were installed in the PAL-ITF. These are (1) ICT and (2) Faraday Cup to measure current and electrons charge, (3) Stripline BPM to measure the location of beams, (4) a YAG/OTR Screen Monitor to measure beam energy and transverse profile motion and (5) a Wire Scanner to measure beam size. In this paper, the purposes and properties of each diagnostic unit and measurement results are introduced.  
 
WEODB103 Current Status of PAL-XFEL Project 2074
 
  • H.-S. Kang, J.H. Han, T.-H. Kang, C. Kim, D.E. Kim, S.H. Kim, I.S. Ko, H.-S. Lee, K.-H. Park, S.J. Park
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  The PAL-XFEL is a 0.1-nm hard X-ray FEL construction project which started from 2011 with a total budget of 400 M$. The PAL-XFEL is designed to have three hard X-ray undulator lines at the end of 10-GeV linac and a dog-leg branch line at 3 GeV point for two soft X-ray undulator lines. The three-bunch compressor lattice (3-BC) is chosen to have large flexibility of operation, making it possible to operate soft X-ray FEL undulator line simultaneously and independently from hard X-ray FEL line. Self seeding to achieve the FEL radiation bandwidth of below 5x10-5 is baseline for the hard X-ray FEL line. Polarization control will be available by using the PU + EPU layout for the soft X-ray FEL line. The overview of the project with current status is presented.  
slides icon Slides WEODB103 [8.332 MB]